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Background

Artificial Neural Networks

p In 1943, Warren McCulloch and Walter Pitts presented their model of artificial 

neurons, considered the first artificial intelligence.
p The term “artificial intelligence” was coined on 1956 by John McCarthy.

McCulloch, Warren S., and Walter Pitts. "A logical calculus of the ideas immanent in nervous activity." The bulletin of mathematical biophysics 5 (1943): 115-133.

inputs outputs

𝑖-th neuron 
at ℓ-th layer:

inputs

activated values
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Background

Artificial Neural Networks

p Development in Recent Years

1943, Artificial Neuron 2012, AlexNet

Milestones in the development of artificial neural networks are accompanied by a 
large increase in scale.

2015, ResNet
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Background

Emergence from Large Language Models
p Emergence is the gradual improvement of model performance before the scale

reaching a certain threshold, followed by a rapid enhancement once the
threshold is surpassed.

Refer to: Pathways Language Model (PaLM): Scaling to 540 Billion Parameters for Breakthrough Performance
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Background

Emergence from Large Language Models
p Emergence is the gradual improvement of model performance before the scale

reaching a certain threshold, followed by a rapid enhancement once the
threshold is surpassed.

Wei, Jason, et al. "Emergent abilities of large language models." TMLR 2022.
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Background

Emergence from Large Language Models

p Increasing evidence suggests that the surprises may not arise from new module 

and architecture designs, but rather from the underlying nature of scale changes.

• Kaplan et al., Scaling Laws for Neural Language Models. 2020
• Xu et al., CVALUES: Measuring the Values of Chinese Large Language Models from Safety to Responsibility. 2023

One interesting 
question:

People increase the model scale and get better results, 
but what has changed underlying the process? 
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Motivation

Interpreting Emergence

p Some pioneer works try to interpret the performance of small and large-scale

models from the correlation between neurons and input features.

inputs outputs

Monosemantic Neuron
One vs. One

inputs outputs

Polysemantic Neuron
N vs. One

inputs outputs

Distributed Features
One vs. N



9

Motivation

Motivational Experiments from Literature

p From literature, we observe that large models have low monosemanticity.
p 1st Observation: Given the specific feature, when turning off monosemantic neurons, the

error of a large model drops smaller than that of a small model.

Finding Neurons in a Haystack: Case Studies with Sparse Probing, https://arxiv.org/pdf/2305.01610.pdf 
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Motivational Experiments from Literature

p From literature, we observe that large models have low monosemanticity.
p 2nd Observation: Given the corresponding/non-corresponding features, the difference in 

activation values of large models is smaller than that of small models.

Motivation

Finding Neurons in a Haystack: Case Studies with Sparse Probing, https://arxiv.org/pdf/2305.01610.pdf 

Pythia-70M

Pythia-6.9B

Large difference between 
the corresponding and non-
corresponding features

Small difference
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Motivation

Summarized Motivations from Literature

p From literature, we observe that large models have low monosemanticity.
p1st Observation: Given the specific feature, when turning off monosemantic neurons, the 

error of a large model drops smaller than that of a small model.

p 2nd Observation: Given the corresponding/non-corresponding features, the difference in 

activation values of large models is smaller than that of small models.

p Motivated by existing works, we propose an assumption: 

the decrease of monosemantic neurons may be a key factor in 
achieving higher performance as the model scale increases.
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Motivation

Motivational Examples

p Assumption: The decrease of monosemantic neurons may be a key factor in
achieving higher performance as the model scale increases.

376×53 = 19928
376×53 = 19928
376×53 = 19928
376×53 = 19928
376×53 = 19928

memorize repeatedly
train repeatedly

376×53 = 19928

376×53 =?

p A student memorizes questions and answers
for short-term gain. As the amount of learning
increases, understand the problem inefficiently.

p Train ANNs with the observed training examples
repeatedly. As the amount of training increases,
slowly reduce the monosemantic neurons.
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Motivation

376×53 = 19928

376×53 =?

Motivational Examples

p Assumption: The decrease of monosemantic neurons may be a key factor in 
achieving higher performance as the model scale increases.
p The student is expected to dismantle the
problem and integrate the knowledge points,
and achieve the final answer via reasoning.

p The large model disassembles the training inputs,
maps the features of samples to multiple neurons,
integrates the neurons, and weights the output.
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Motivational Experiments from Literature
p We rather conclude the current paradigm of training neural networks as a

passive process in decreasing monosemantic neurons.

p Inspired by the emergence, we propose one question:

Motivation

Can we proactively inhibit monosemantic neurons in artificial neural networks 
to achieve high performance?

Heuristic Learning Understanding and 
Reasoning

N to One
One to N

Polysemantic Neurons
Distributed Features

Rote Learning One (question) to 
One (answer)

One (feature) to 
One (neuron) Monosemantic Neurons
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Motivational Experiments from Literature
p Inspired by the emergence, we propose one question:

p Unfortunately, it is a non-trivial task to proactively inhibit monosemantic
neurons from the perspectives of monosemantic neurons detection and inhibition.

Motivation

Can we proactively inhibit monosemantic neurons in artificial neural networks 
to achieve high performance?
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Motivation

Technical Challenges: Monosemantic Neuron Detection
p Existing detection has limitations and high computational overhead

p Limitation: require to calculate on manually designed and labeled feature data sets.
p High Computational Overhead: Probes require training. And the calculation requires to

frequently count the inputs to neurons and activation values from all neurons.

p Strictly defining monosemantic neurons is still under discussion in quantitative
analysis.
p Generality: Detection does not dependent on a specific data set.
p Efficiency: Detect monosemantic neurons during online training.

Expected
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Motivation

Technical Challenges: Monosemantic Neuron Inhibition
p Simply prohibiting the activation of monosemantic neurons will intensify the

monosemanticity of artificial neural networks.

✅ ❌ ✅

correct prediction wrong prediction enhance the monosemanticity
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Motivation

Summary on Technical Contributions

We propose to learn from emergence to present a study on proactively inhibiting

the monosemantic neurons of artificial neural networks.

p The Evaluation Metric for Detecting Monosemantic Neurons
p Data-specific evaluation → A quantitative metric does not relies on data sets.

p Large computational overhead → Online computation guarantee.

p The Proactive Deactivation Method to Reduce Monosemantic Neurons
p Hard to deactivate → A theoretically supported method to suppress monosemantic neurons
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A Study on Proactively Inhibiting the Monosemantic Neurons

Evaluation Measurement of Monosemantic Neurons 

p Intuition: Design the metric 𝜙(𝐻) of evaluating monosemantic neurons from

low frequency of activation and high deviation of activation value.
p Low frequency: Existing work has divided hundreds of features, and the one-to-one nature

determines that their activations are sparse.

Pythia-70M

Finding Neurons in a Haystack: Case Studies with Sparse Probing, https://arxiv.org/pdf/2305.01610.pdf 
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A Study on Proactively Inhibiting the Monosemantic Neurons

Evaluation Measurement of Monosemantic Neurons 

p Intuition: Design the metric 𝜙(𝐻) of evaluating monosemantic neurons from

low frequency of activation and high deviation of activation value.
p High deviation: The distribution after corresponding feature input greatly deviates from the

overall distribution.

Pythia-70M

Finding Neurons in a Haystack: Case Studies with Sparse Probing, https://arxiv.org/pdf/2305.01610.pdf 
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A Study on Proactively Inhibiting the Monosemantic Neurons

Evaluation Measurement of Monosemantic Neurons 

p Intuition: Design the metric 𝜙(𝐻) of evaluating monosemantic neurons from

low frequency of activation and high deviation of activation value.

p But what is activation in our scenario? (Another issue)

i

𝑖-th neuron 
at ℓ-th layer: an example of dropout

Activation is a concept
across different data
instances since we need to
evaluate it on different
inputs, features, neurons.
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A Study on Proactively Inhibiting the Monosemantic Neurons

Evaluation Measurement of Monosemantic Neurons 

p Intuition: Design the metric 𝜙(𝐻) of evaluating monosemantic neurons from

low frequency of activation and high deviation of activation value.

p But what is activation in our scenario? (Another issue)

𝑖-th neuron 
at ℓ-th layer: 𝑓! 𝒙 " = 𝒛" 𝑓#(𝒛) = 𝑦

If an input 𝒙 triggers a neuron 𝑧" to
output a value 𝑓! 𝒙 " that deviates
significantly from its statistical mean
̅𝑧" .
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A Study on Proactively Inhibiting the Monosemantic Neurons

Evaluation Measurement of Monosemantic Neurons 

p Intuition: Design the metric 𝜙(𝐻) of evaluating monosemantic neurons from

low frequency of activation and high deviation of activation value.

p But what is activation in our scenario?

𝑓! 𝒙 " = 𝒛" 𝑓#(𝒛) = 𝑦

If an input 𝒙 triggers a
neuron 𝑧" to output a
value 𝑓! 𝒙 " that
deviates significantly from
its statistical mean ̅𝑧" .

Plan A: Set a threshold 𝜏

Plan B: Pairwise comparison

❌

❌

from different data samples
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A Study on Proactively Inhibiting the Monosemantic Neurons

Evaluation Measurement of Monosemantic Neurons 
p Intuition: Design the metric 𝜙(𝐻) of evaluating monosemantic neurons from

low frequency of activation and high deviation of activation value.
p Given 𝑖 -th neuron, we denotes its historical samples under m inputs

𝑥 6 , 𝑥[8], … , 𝑥[:] as {𝑧;
6 , 𝑧;

8 , … , 𝑧;
: } and new value under 𝑥[:<6] as 𝑧;

:<6 .
The proposed monosemanic scale evaluation 𝜙 𝑧; :

where

Can measure the high deviation, and ̅𝑧! is mainly decided by deactivated neurons.
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A Study on Proactively Inhibiting the Monosemantic Neurons

Evaluation Measurement of Monosemantic Neurons 

p Metric Online Computation Guarantee

Intuition behind our theoretical
guarantee:
p Define the metric on the

train inputs sequentially
allows us to calculate the
metric with incremental
computation.



27

A Study on Proactively Inhibiting the Monosemantic Neurons

Evaluation Measurement of Monosemantic Neurons

p Given a series of measured monosemantic scales {𝜙(𝑧6
= ), 𝜙(𝑧8

= ), … , 𝜙(𝑧>
= )},

there are multiple ways to filtering those monosemantic neurons:
p The maximum one

p The largest log 𝑛 neurons

p The maximum one in every batch

p The certain ratio (1%n, 0.1%n)

p Sampling from the distribution 𝜙 ⋅



28

A Study on Proactively Inhibiting the Monosemantic Neurons

Monosemantic Neuron Inhibition

p The goal is to deactivate monosemantic neurons to reduce the monosemantic

scale of the neural networks, i.e., become more polysemantic or distributed.
p For the identified neuron 𝑧! as “highly monosemantic”, design deactivation strategy to

optimize the frontal model 𝑓" ⋅ and following model 𝑓# ⋅ so that:
p Reduce the activation degree of 𝑧" on input 𝑋

p reduce the correlation 𝒙 → 𝒛!

p Reduce the dependence of output 𝑌 on 𝑧" activation
p reduce the correlation 𝒛! → 𝑦

𝑓! 𝒙 " = 𝒛" 𝑓#(𝒛) = 𝑦

Expected
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A Study on Proactively Inhibiting the Monosemantic Neurons

Monosemantic Neuron Inhibition

Intuitive Examples for Expected Goals
p Reduce the dependence of output 𝑌 on 𝑧! activation

p Optimize 𝑓#(𝒛) = 𝑦
p Reduce the activation degree of 𝑧! on input 𝑋

p Optimize 𝑓! 𝒙 " = 𝒛" to 𝒛"$

before after

Activate the feature as 
soon as it comes

Activation becomes lower 
and closer to the mean

❌ ❌

before after

Bad output without the 
neuron activated

Other neurons can 
contribute the prediction
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A Study on Proactively Inhibiting the Monosemantic Neurons

Monosemantic Neuron Inhibition

Naïve deactivation ways

𝒛" 𝒛"$

p Naïve (a): Deactivate the neuron directly p Naïve (b): Deactivate the neuron directly

𝑓! 𝒙 " = 𝒛" 𝑓#(A𝒛𝒏𝒈) = 𝑦

will not rely on 𝒛𝒊but 𝒛" still activated 

𝑓! 𝒙 " = 𝒛" 𝑓#(𝒛 + A𝒛 − 𝒛 𝒏𝒈) = 𝑦

will not rely on 𝒛𝒊Even to be more activated

deactivation: ̅𝑧

Modify the output of neurons
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A Study on Proactively Inhibiting the Monosemantic Neurons

Monosemantic Neuron Inhibition

p The proposed solution: Reversed Deactivation

𝑓! 𝒙 " = 𝒛"

𝑓#(−𝒛 + A𝒛 + 𝒛 𝒏𝒈) = 𝑦

deactivation: ̅𝑧

𝒛" 𝒛"$

Modify the output of neurons

will not rely on 𝒛𝒊 due to A𝒛

(1) model find performance drops 
(2) model tries to optimize the neuron 𝑖 to 

increase its weight
(3) negative direction: -> decrease weight

can be optimized by gradients

reduce the activation degree of 𝒛𝒊 on input 𝑿 ✅
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A Study on Proactively Inhibiting the Monosemantic Neurons

Monosemantic Neuron Inhibition

p The theoretical guarantee on neuron inhibition
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Empirical Study

Experimental Setup
We hope our model MEmeL can be implemented on the top of classic/powerful neural
networks to improve their performance by inhibiting Monosemantic neurons.
p Language Task

p Apply MEmeL to the benchmark model BERT on the public data GLUE

p Image Task
p Apply MEmeL to the benchmark model Swin-Transformer on the public data ImageNet

p Simulation Task (rainfall)
p Apply MEmeL to the benchmark model ConvGRU on the public data HKO-7
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Empirical Study

Experimental Setup
We hope our model MEmeL can be implemented on the top of classic/powerful neural
networks to improve their performance by inhibiting monosemantic neurons.

p Only Top-1 monosemantic neuron is deactivated in each batch
p MEmeL (reverse deactivation) is better than others
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Empirical Study

Experimental Setup
p We hope our model MEmeL can be implemented on the top of classic/powerful neural

networks to improve their performance by inhibiting monosemantic neurons.
p We hope our model MEmeL can indeed reduce the monosemantic scale of neural

networks.

Compared with two naive methods, our reverse 
deactivation suppresses monosematic neurons.
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Summary

Shortcomings
p Need to verify the effectiveness of our method on large language models.
p Need to monitor whether the training process of modern neural networks (e.g., CNNs,

RNNs) on different public benchmark data sets changes from high to low.
p Need to prove that our method is significantly faster and more effective in terms of

inhibiting monosemnatic neurons, and then verify the superiority of proactive
inhibition over passive method.

However, extending this research to very large-scale datasets is appealing yet impossible
for research departments due to limited resources. We are delighted to share the co-
authorship and await collaboration from any AI company/group.


