
Message Function Search for Knowledge Graph Embedding
Shimin DI Lei CHEN

Computer Science and Engineering, HKUST Data Science and Analytics, HKUST(GZ)
Hong Kong SAR, China Guangzhou, China
sdiaa@connect.ust.hk leichen@ust.hk

ABSTRACT
Recently, many promising embedding models have been proposed
to embed knowledge graphs (KGs) and their more general forms,
such as n-ary relational data (NRD) and hyper-relational KG (HKG).
To promote the data adaptability and performance of embedding
models, KG searching methods propose to search for suitable mod-
els for a given KG data set. But they are restricted to a single KG
form, and the searched models are restricted to a single type of em-
bedding model. To tackle such issues, we propose to build a search
space for the message function in graph neural networks (GNNs).
However, it is a non-trivial task. Existing message function designs
fx the structures and operators, which makes them difcult to han-
dle diferent KG forms and data sets. Therefore, we frst design a
novel message function space, which enables both structures and
operators to be searched for the given KG form (including KG, NRD,
and HKG) and data. The proposed space can fexibly take diferent
KG forms as inputs and is expressive to search for diferent types
of embedding models. Especially, some existing message function
designs and some classic KG embedding models can be instanti-
ated as special cases of our space. We empirically show that the
searched message functions are data-dependent, and can achieve
leading performance on benchmark KGs, NRD, and HKGs.

CCS CONCEPTS
• Information systems → Web searching and information discov-
ery; • Computing methodologies → Knowledge representa-
tion and reasoning; Machine learning algorithms.

KEYWORDS
graph neural networks, knowledge graph embedding

ACM Reference Format:
Shimin DI and Lei CHEN. 2023. Message Function Search for Knowledge
Graph Embedding. In Proceedings of the ACM Web Conference 2023 (WWW
’23), April 30–May 04, 2023, Austin, TX, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3543507.3583546

1 INTRODUCTION
Web-scale knowledge graphs (KGs) [2] have attracted much atten-
tion due to their widespread existence, which have promoted a
series of web applications such as recommendation system [8] and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’23, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00
https://doi.org/10.1145/3543507.3583546

question answering [33]. Generally, KGs store and organize human
knowledge with the form of binary fact � (�1, �2) that represents the
relation � between entities �� , e.g., playIn(Leonard,StarTrek1).
More recently, researchers observe that binary facts are only a
part of knowledge bases. For example, more than 30% of entities
in Freebase [6] involve facts that contain more than 2 entities [58].
Thus, research communities start to learn more general forms of
KGs, such as n-ary relational data (NRD) � = {� (�1, . . . , ��)} [19, 31]
(e.g., playInCharacter(Leonard, StarTrek1,Spock)) and hyper-
relational KG (HKG) � = {� (�1, �2, {(�� � , � �)}�

=3)} [15, 40] (e.g., �
playInCharacter(Leonard,StarTrek1,(character:Spock)).

To manipulate web-scale KG/NRD/HKG, various promising em-
bedding models [35, 39, 53] have been proposed to encode sets
of relations � and entities � into �-dimensional vector space
∈ R |� |×� ∈ R |� |×� � , � , such as geometric models [7, 43, 58],

neural network models [19, 40, 49], bilinear models [25, 47, 61], and
more general tensor decomposition models [3, 28, 31]. However,
these methods follow the classical way to design a universal model
for diferent data sets. But due to the diversity of data sets [53],
an embedding model that performs well on one data set may not
adapt well to another one [39, 68]. To tackle this data-aware is-
sue, KG searching models [11, 42, 68] promote the adaptability of
embedding models by searching appropriate models for the given
data.

Despite the success of KG searching models [11, 42, 67, 68], there
are two major limitations of them. First, existing searching models
are strictly restricted to one KG form. They cannot be applied or
extended to diverse KG forms. This obviously limit the data adapt-
ability of searching models. Second, the search space of current
searching models is only based on tensor decomposition models,
i.e., only tensor decomposition models can be searched. This de-
sign may limit the performance of searched models since there are
many other types of promising embedding models. Therefore, a
more fexible and expressive search space is needed to search for
embedding models on diverse KG forms.

Recently, some pioneer embedding models [15, 41, 60] have de-
signed domain-specifc message functions in powerful graph neural
networks (GNNs) [20, 27, 29] by capturing the interaction between
entities and relations (see Fig. 1). Inspired by their success, we
may be able to build a fexible and expressive search space on the
message functions. Unfortunately, it is a non-trivial task because
existing message function designs are rigid. First, in GNNs for KG
embedding works, their message functions manually design and
fx the structures and operators, which are infexible to handle di-
verse KG forms and not conducive to handling complex relational
patterns in diferent KG data sets. As shown in Fig. 1, their mes-
sage functions fx the input forms, such as CompGCN [49] for KG,
G-MPNN [60] for NRD, StarE [15] for HKG. Moreover, under a
KG form, relations usually have distinct patterns in diferent KG

2633

https://doi.org/10.1145/3543507.3583546
https://doi.org/10.1145/3543507.3583546
mailto:leichen@ust.hk
mailto:permissions@acm.org
mailto:sdiaa@connect.ust.hk
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583546&domain=pdf&date_stamp=2023-04-30

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Di and Chen

Table 1: Overview of the existing GNN-based works. NC, GC, LP, RP denote node classifcation, graph classifcation, link
prediction, relation prediction, respectively. “Data-aware” measures whether the structures and operators of message function
change for diferent inputs. �� (·) is dropout; �� (·) is batch normalization; �̄ (·) summarizes mixed operations [70]; �� denotes

�
the output from �-th operator of O in �-th layer of the message function (see Sec. 3.1); other notations can be checked in Sec. 2.

Type Model Scenarios Message Function
Task # Edge Types # Edge Length KG Form Data-aware Function

GNNs
Searching

You et al. [63]
GraphNAS [16]
AGNN [71]
SANE [70]

NAS-GCN [24]
AutoGEL [54]

NC/GC/LP
= 1 = 2

N/A

×
×
×
×
×
×

�� (�� (� � � + �))
�� ������� (�� , � �)
�� � � � �
� ̄� ({� � }� � ∈� (��))
�� � ��� (�� �)� �
�(�) � (� � , �)

NC

≥ 1 = 2GC
NC/GC/LP KG

GNNs for
KGs

R-GCN [41]
CompGCN [49]
G-MPNN [60]
StarE [15]

LP/RP
≥ 1 = 2 KG

×
×
×
×

�� � �
�� (�)� (� � , �)Î
�� (�) ∗ � ��� ∗ ��
�� (�)�� (�� , � (�, ��))

≥ 1 ≥ 2
NRD
HKG

Ours MSeaKG LP/RP ≥ 1 ≥ 2 KG/NRD/HKG
√ }| O |

���&������ ({��
� �=1)

data sets, which brings difculties for the fxed message function to
adapt to diferent KG data sets. For example, the message function
of G-MPNN [60] adopts the inner product way like DistMult [61]
to compute the correlation between entities and relations, which
has been proven to only cover symmetric relations [25]. Its perfor-
mance may not be good if there are many non-symmetric relations.
Second, existing GNN searching methods [69] more focus on search-
ing connections between GNN layers and other GNN functions.
Their message functions are also fxed, thereby incapable of han-
dling diferent KG data sets. And most of them usually ignore edge
embeddings to represent relations, which cannot capture complex
correlation between entities and relations. We summarized existing
GNNs for KG embedding and GNN searching models in Tab. 1 in
terms of allowed KG forms and message functions.

In summary, the search space of KG searching methods is in-
fexible to handle diverse KG forms and is limited to tensor decom-
position models, while rigid message functions in existing GNN
works are not conducive to handling diferent KG forms and data
sets. Therefore, to improve the adaptability and performance of KG
embedding models, we propose Message function SEArch for the
given KG form (including KG, NRD and HKG) and data, named as
MSeaKG. In this paper, we propose to build a fexible and expres-
sive search space based on the message function. More concretely,
we frst propose a fexible space that allows diverse KG forms as
inputs. Then, we identify the necessary computation operators that
are domian-specifc designs for KG and search the structures that
interact these operators in the message function. Not only various
types of embedding models can be instantiated by message func-
tions with diferent structures and operators, but also the searched
message function can capture the relational patterns in the given
data. Besides, we also search other GNN components (e.g., aggre-
gation function) for pursuing more performance improvements.
Finally, we formulate the discrete GNN models with probabilistic
modelings to enable an efcient search algorithm working on our
scenario. The main contributions are listed as:
• MSeaKG proposes a novel search space for KG embedding models.
As shown in Fig. 3 (a), the space allows diferent KG forms (in-
cluding KG/NRD/HKG) as inputs and covers multiple types of KG
embedding models (including tensor/GNN/geometric models),

while previous KG searching methods are specifcally designed
for one KG form and only cover one type of embedding models.

• The message function in existing GNN works is rigid, which is
incapable of handling diferent KG forms and data sets. MSeaKG
proposes a novel message function space, which enables the
structures and operators of message functions being optimized
for diferent KG forms (including KG/NRD/HKG) and data sets.

• We compare MSeaKG with baselines on the link prediction and re-
lation prediction tasks. Experimental results show that MSeaKG
can consistently achieve state-of-the-art performance on bench-
mark KGs, NRD, and HKGs by designing data-aware message
functions, which verifes the improvements in adaptability and
performance of the KG embedding model.
Notations. We denote scalars by lowercase letters (�), vectors by

bold lowercase letters (�), sets by uppercase letters (�), matrices by
bold uppercase letters (�). Note that the superscript and subscript
are utilized to identify notations instead of indexing elements, such
as �� is �-th entity and e� is the vector representation of �-th entity.

2 RELATED WORK

2.1 Graph Neural Network Searching Methods
To avoid manual eforts on neural architecture designs, Neural
Architecure Search (NAS) [22, 62] aims to automatically search
suitable neural architectures for the given data and task. Generally,
search space, search algorithm, and evaluation measurement are
three important components of NAS [12]. Search space defnes
what network architectures in principle should be searched. The
search algorithm performs an efcient search over the search space
and fnds architectures that achieve good performance. Evaluation
measurement decides how to evaluate the searched architectures
during the search. Classical NAS methods are computationally
consuming because candidate architectures are evaluated in a stand-
alone way, i.e., evaluating the performance of architecture after
training it to convergence. To reduce the search cost, one-shot
NAS [38] proposes weight sharing to share network weights across
candidate architectures and evaluate them on the shared weights.

Some pioneer works have explored NAS for GNNs [16, 24, 63,
71]. And the one-shot NAS also has been introduced to search

2634

Message Function Search for Knowledge Graph Embedding WWW ’23, April 30–May 04, 2023, Austin, TX, USA

!! !"

!""#$% &'()#$%

!"

!&,#$%

/ 0!

! --+1
.2,'(/),

(a) MPNN for (ei , ej)

%

!! "

*

!&,#$%-.(#$%

!"

1 0!

 !" #$%
& '()*

(b) CompGCN for
r (ei , ej)

!!! !!"

###!

!"#

"

$%

###"

 !"

!"

!""#$% &'(&)*+,- !&,#$%

1 0!

!" #$% (*+,-.)*!$
!+(*/0

(c) G-MPNN for r (e1, · · · , en)

!! "$# !%"

*$

+ *%$%

!&,#$%-.(#$% !.

1 0"

')!32(+(/),
)3 *+()*

(d) StarE for r (e1, e2, {(roj , ej) }nj=3)

Figure 1: The framework of several GNN-based works. The green box refers to the message function.

GNN architectures recently [54, 56, 57, 70]. As shown in Fig. 1(a),
most GNN searching methods follow the message passing neural
networks (MPNNs) [17] to unify two steps in one GNN layer:

����1 : �� ← ���({��� (�� , � �)}� � ∈� (��)), (1)
����2 : �� ← ��� (���� (�� , ��)), (2)
∈ R� where �� represents the embedding of node �� , �� is the

intermediate embeddings of �� gathered from its neighborhood
� (��). The search space of operators are summarized into:

• Message Function ��� (·): The message function decides the
way to gather information from a neighborhood � � of the center
node �� . The typical message functions in existing GNN searching
methods are summarized as ��� (�� , � �) = �� � �� � [69], where
�� � denotes the attention scores between nodes �� with � � .

• Aggregation Function ���(·): It controls the way to ag-
gregate message from nodes’ neighborhood. Usually ��� ∈
{���,���,����}, where ���(·) =

Í
� � ∈� (��) ��� (�� , � �),

��� (·) denotes channel-wise maximum, and ����(·) =Í
� � ∈� (��) ��� (�� , � �)/|� (�) |.

• Combination Function ���� (·): It determines the way to
merge messages between node and its neighbors. ���� is usu-
ally selected from {������, ���,���}, where ������ (·) = [�� , m�],
��� (·) = e� + m� , and Multi-layer Perceptron ��� (·) = ��� (�� +
��).

• Activation Function ��� (·): [��������, �������, ���ℎ, ����, ���]
are some of the most commonly used activation functions [16].

Overall, above message functions are still fxed. No matter what
the input data is, their structures and operators remain unchanged.
Besides, most instantiations of ��� (·) (see Tab. 1) only learn node
embeddings, which cannot encode relations (i.e., edge types). Note
that NAS-GCN [24] takes the edge feature �� � between �� and � � as
input without learning edge embeddings.

2.2 Graph Neural Networks for KG Embedding
KG embedding models [35, 39, 53, 66] have demonstrated their
efectiveness in the past decades. Compared with classic models, it
may be a better way to adopt diferent graphs to model several KG
forms. For instance, tensor decomposition models [3, 28] represent
a KG into a 3-order tensor and decompose tensors into � and � .

But it is hard to extend them from the case of fxed arity (e.g., KG)
to the of mixed arities where facts may have diferent � in the given
data (e.g., {� (�1, �2), � (�1, �2, �3)}). That is because a tensor can only
model a set of facts under the same arity [11].

As presented in Tab. 1 and Eq. 1, message functions in classic
GNNs simply aggregate messages from adjacent nodes. But in sce-
narios of KGs, NRD and HKGs, it is important to know the type of
edge (relation) that connects several nodes (entities). To capture
relations, R-GCN [41] takes the binary fact � (�� , � �) as inputs and
proposes to model � ∈ � with W� ∈ R� ×� , which is instantiated as:

�� = ��� (���({�� � � }� (�� ,� �) ∈� (��))), (3)
where � (��) = {� (�� , � �) ∈ � : � ∈ �, � � ∈ �} is the set of facts
incident on �� . But such relation modeling may lead to the over-
parameterization issue because |� | could be large. Thus, CompGCN
uses the vector � to represent � instead of matrix � [49]:

�� = ��� (���({�� (�)� (� � , �)}� (�� ,� �) ∈� (��))), � = � � (4)
where �(�) records the directional information of edges. The entity-
relation composition operator set {���,����, ���� } is inspired by
classical scoring function design in existing KG embedding models,
such as element-wise subtraction ��� (·) = � � − � [7], inner product
���� (·) = � � ∗ � [61], circular correlation ���� (·) = � � ◦ � [36].

Subsequently, G-MPNN [60] extends GNNs from KGs to NRD. It
models NRD {� (�1, . . . , ��) : 2 ≤ � ≤ � } under the mixed arity case
as multi-relational hypergraph. The message function is formed as:Ö
�� = ��� ([�� , ���({��,� (�) ∗ �� � ,� ∗ � � }� (�1,...,��) ∈� (��))]),

� ∈{1,...,� }
where � represents � (�1, . . . , ��) ∈ � , � (�) : � → {1, . . . , �� } is a
positional mapping (�� ≤ |� |), and �� � ,� is the positional embedding
vector of � � on fact � to model the positional information.

StarE [15] takes the hyper-relational fact � (�1, �2, {(�� � , � �)})
as inputs, where � (�1, �2) is the base triplet and �� � records the
role information of entity � � that plays in this fact. Note that
� (�1, �2, {(�� � , � �)}) is same as � (�1, . . . , ��) if �� � is not available.
StarE frst uses �� = ����({�� (�� � , � �)}) to aggregate informa-
tion from the role-value pairs, then uses a vector concatenate oper-
ator � (·) to form a hyper-relation based on � with �� as:
�1 = ��� (���({�� (�)�� (�2, � (� , ��))}� (�1,�2,{ (�� � ,� �) }) ∈� (�1�))),

where the composition operator �� (·) performs on the hyper-
relation with base entity and the update of � in StarE is similar

2635

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Di and Chen

Figure 2: The framework of MSeaHKG. Fig. (a) shows a layer of Fig. (b), including the search for message functions ��(·; �) and
other functions (e.g., ���(·), ���� (·), ��� (·)). The operator ��� enables the connectivity of diferent layers [24].

to CompGCN. Fig. 1 plots several message functions for diferent
KG forms.

3 MSEAKG
In this section, we frst propose a search space that can fexibly
take KG/NRD/HKG as input forms and is expressive to search dif-
ferent types of models. Then, we formulate the search problem and
leverage an efcient algorithm to solve it.

3.1 Search Space Design
As discussed in Sec. 1, dynamicly designing the message function is
more conducive to pursuing high empirical performance, because
the searched message function can adapt to various KG forms and
complex relational patterns in the given KG data. However, the
space of existing GNN searching methods is neither data-aware nor
applicable to various KG scenarios (see Eq. (1) and Fig. 1(a)). Thus,
we focus on the search space design of message functions, which is
important to KGs but is neglected by the current works.

From Fig. 1, we can observe that those message functions are
mainly diferent in these two aspects: 1) the operators (e.g., � , �,�)
for computing hidden representations, 2) the structure of message
functions that decides how computational operators are connected.
For the operator selection, existing works manually tune them
on diferent data sets, such as � in CompGCN [49], �� , �� , � in
StarE [15], ���(·) in G-MPNN [60]. Moreover, the structure of mes-
sage functions for NRD (Fig. 1(c)) and HKG (Fig. 1(d)) tends to be
deeper and more complex than those for KGs (Fig. 1(b)). This is
because the message function needs to process more entities/roles
when facing the facts with higher arity (� is arity of � (�1, · · · , ��)).
These observations motivate us to build spaces of operators and
structures for message function search.

Operator Space. We investigate more about the relationship
between operators and relational patterns. Generally, the relational
pattern [39] can be represented as a certain correlation among
� (���� (�1, . . . , ��)), where ���� denotes the permutation. For
example, � is symmetric if � (� � , ��) must be true when � (�� , � �)
is true. �1 and �2 are inverse relations if �1 (�� , � �) must be true
when �2 (� � , ��) is true. Therefore, the message function in the
search space must be able to handle such correlation in the form of

� (���� (�1, . . . , ��)). In the next, we introduce the space of opera-
tors and discuss how they deal with � (���� (�1, . . . , ��)).

• Positional Transformation Matrix �� (�) : The position of entity
in a fact may determine the plausibility of the fact. For exam-
ple, isCaptialOf(Beijing,China) is true while isCaptialOf
(China,Beijing) is false. G-MPNN [60] utilizes the positional
embedding ��,� and ��,� (�) to encode the position of entity � and
relation � in diferent facts, which requires the model complexity
� (� |� | (|� | + �)). However, the training data set is very sparse
in KGs. This may sufer from over-parameterization and make
the training insufcient. Instead, we adopt the way to transform
one entity � to � possible positions. Let the positional mapping
be � (�) : � → {1, . . . , � }, then the positional matrix is able to
transform � to the permutation position in ���� (·) by �� (�) �,
where �� (�) consumes � (��2) (|� |, |� | ≫ � in practice).

• Concatenate Operator � (·): It mainly determines the concatena-
tion way between embedding vectors. We set O� = {������,����,
����} [15], where ���� is the weighted sum. In general, � (·)
can concatenate embeddings after the positional transform ma-
trix �� (�) , i.e., encoding ���� (�1, . . . , ��).

• Role Embedding �� : It is utilized to model the semantic informa-
tion of entities [32]. For example, the roles in 2nd position of facts
playInCharacter(Zachary,StarTrek,(character:Spock))
and playInAward(Zachary,StarTrek,(award:BC-BSFC)) are
diferent though other entities are same. Thus, the model
should be able to capture the role of candidate entities, e.g.,
entity BC-BSFC is unlikely to be the correlated with relation
playInCharacer since BC-BSFC is semantically similar to award
instead of character. Note that role embedding is an optional
choice depending on whether the inputs have role information.

• Composition Operator � (·): Following CompGCN [49], we uti-
lize composition operator � (·) to capture messages between the
node and edge embeddings. Note that � actually encodes the
interaction between � and ���� (�1, . . . , ��). While CompGCN
and StarE empirically selects the most proper � (·), we include it
into the operator space to search � (·). We combine the settings of
CompGCN and StarE as O� = {���,����, ����, ����� } (����� [43],
see others in Sec 2.2). Besides, � not only occurs between base

2636

Message Function Search for Knowledge Graph Embedding WWW ’23, April 30–May 04, 2023, Austin, TX, USA

2/

 .

) -
) -

.
/(

)
/ /

-
/)

) -)
CANDECOM/PARAFAC
(CP)-based

Tucker-based

Convolutional Network

Graph Neural Network

Translational

Roto-
Translational

!0 "

⋆

!'

−

!0 "!:�

∗

!0 !;

°

"

∗

!0 "!:�

∗

!0 "

⋆

!'

−

!0 "!:�

∗

!0 !;

°

"

∗

!0 "!:�

∗

!0 "

⋆

!'

−

!0 "!:�

∗

!0 !;

°

"

∗

!0 "!:�

∗

!0 "

⋆

!'

−

!0 "!:�

∗

!0 !;

°

"

∗

!0 "!:�

∗

(a) Taxonomy of KG embedding models. (b) RotatE [43]. (c) n-DistMult [61]. (d) HolE [36]. (e) n-CP [28].
Figure 3: Fig. (a) is motivated by [39], where arrows indicate that the target model can be specialized into the source method.
Intuitively, the space of MSeaKG is based on GNNs (orange color), but it can cover tensor/neural network/geometric models and
allow KG/NRD/HKG as inputs. Fig. (b)-(d): Several instantiation cases of MSeaHKG message function space. ◦ denotes circular
correlation ���� (·) [36], ∗ denotes inner product ���� (·) [61], − denotes the substraction ��� (·) [7], ★ is from RotatE [44].

relation � with entities, but also captures the correlation between
roles �� � with entities in HKGs.

• Others: (1) The ��� (�) = � operation allows inputs to skip one
layer in the message function; (2) Unlike �� (�) , the transform
matrix � processes the hidden representations.

In summary, �� (�) encodes the positional information, which
transforms entity embeddings into corresponding positions. Then,
the operator� (·) concatenates the entity embeddings after encoding
positional information. �� (�) and � (·) are employed to represent
���� (·). The operator � (·) computes the interaction between �
with �� to capture the correlation between � and ���� (·).

Structure Space for Message Function Search. Among above
components, we fx the role embedding and positional transform
matrix �� (�) in the message function (see Fig. 2(a)) at the initial
layer. And we include others into the space of message function
O = {� , �,�, ��� } for searching. As shown in Fig. 2(a), we denote
the node �

�
� as �-th operator of O in �-th layer and ��

� be the hidden

representation outputted by �
�
� . Then we have:

{�� (�1) �1,· · ·, �� (��) ��,��3 ,· · ·,��� ,� } if � (�1, �2, {�� � , � � }�
=3)� {��

0} ={
{�� (�1) �1,· · ·, �� (��) ��,� } if � (�1, · · · , ��)
()

}|O | ��� = ��
� {�� �

� ���
−1

�=1 , � ∈ {1, . . . , � } and � ∈ {1, . . . , |O|}, (5)
where �� ∈ {0, 1} controls the connection between �� with �� −1,

� � � �

i.e., {�� } controls the structure of message functions (see Fig. 2 (c)).
� �

Compared with works in Sec. 2.2, it is more fexible to take any data
form as inputs. In practice, to handle the facts with mixed arities,
we use the maximum arity � as the maximum allowed inputs,
i.e., |{�0}| = 2� − 1 for HKG or � + 1 for NRD. For those facts

�
� < � , we pad zero embeddings like {�� (�1) �1, �� (�2) �2, 0, 0, � }
when � = 2, � = 4.

To avoid manual operation selection, we also search for concrete
operations of two operators � and � . Given the operator set O�

�� �� and O� , let �� , � ∈ {0, 1} records the selection �-th operation
�

�� ∈ O� , O� at �-layer respectively. Then, � and � perform the Í �� computation in Eq. (5) could be �� (�) = � �� (�) and �� (�) =
� Í �� Í �� Í �� �

� �� (�). Note that � �� = 1 and � �� = 1. Let ��� =
�� �� {�� }∪ {� }∪ {� }. The message function parameterized by ���

� � � �
is defned as:()

� (�1, . . . , ��); ��� | O |
�� = ���&������ ({��� }�=1), (6)

Algorithm 1: MSeaKG

Input: Facts {S��� , S��� } from KG/NRD/HKG G(�, �, �)
1: Initialize embedding � and GNN architecture parameter � ¯
2: while not converged do
3: Sample a GNN architecture � as � ∼ � ̄ (�);

�
4: Feed S��� into the sampled � to compute L(�, �; ����);
5: Compute ∇

� ¯ � [L(·)] (Eq. 9) and ∇� � [L(·)] (Eq. 10) to
¯update �, �;

6: end while
7: Sample 10 architectures {� � } and select the one
� ∗ = arg min� � L(� � , �; ����)

8: Retrain the derived � ∗ from scratch to obtain the fnal �∗
Output: Searched GNN architecture � ∗ with embedding �∗

where we discard �� for simplicity, and �� is outputted by the
�

last layer of Eq. 5. Intuitively, existing message functions for
KG/NRD/HKG (Fig. 1) are contained in the MSeaKG space (Fig. 2(a)).
Moreover, some classic KG embeddings can be instantiated as spe-
cial cases of our space (see Fig. 3), including geometric model Ro-
tatE [43] and tensor models n-DistMult [61], HolE [36], n-CP [28].

Overall GNN Space. Except for searching ��(·; ���), we also
search for other operators (e.g., ���, ����, ���) like existing GNN
searching methods (see Sec. 2.1) as shown in Fig. 2(a). For example,
let O��� = {���,����,��� } be the set of candidate ���(·). Step 1
of MPNN (Eq. (1)) can be built on the top of Eq. (6):
�� = ���({��(� (�1, . . . , ��); ���)}� (�1,...,��) ∈� (��) ; �

���)∑
���

= �
� · � � ({��(� (�1, . . . , ��); ���)}� (�1,...,��) ∈� (��)).

� � ∈O���

Then, step 2 of MPNN (Eq. (2)) for updating �� are similar to above
equation. And the update of � follows the way of [15, 49].

Let � = {��� , ���� , . . . } be parameter set for all operators selec-
tion in our MPNN framework. Then, an architecture can be repre-
sented as �

� = {��(·; ���), ���(·; ����), · · · }. Existing GNNs for
KG embedding actually can be represented by diferent �. Overall,
a GNN model �

� encodes the given KG G into embedding space
� = {� , �}, i.e., � = �

� (G).

3.2 Search Algorithm Design
In this subsection, we introduce how to select the GNN �

� that
can achieve high performance on the given G. First, we need to

2637

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Di and Chen

Table 2: The model comparison of LP task on the case of mixed arity. The results of Geometric, NNs and multi-linear baselines
are copied from [32]. GNN baselines are re-implemented due to the task variance. S2S is copied from the original paper.

Type Model MRR
WikiPeople (HKG)
Hit@1 Hit@3 Hit@10 MRR

JF17K (NRD)
Hit@1 Hit@3 Hit@10

Geometric RAE [65] 0.253 0.118 0.343 0.463 0.396 0.312 0.433 0.561

NNs
NaLP [19]
HINGE [40]
NeuInfer [18]

0.338
0.333
0.350

0.272 0.364
0.259 0.361
0.282 0.381

0.466
0.477
0.467

0.310
0.473
0.451

0.239 0.334
0.397 0.490
0.373 0.484

0.450
0.618
0.604

Multi-linear HypE [14]
RAM [32]

0.292
0.380

0.162 0.375
0.279 0.445

0.502
0.539

0.507
0.539

0.421 0.550
0.463 0.573

0.669
0.690

GNNs StarE [15]
G-MPNN [60]

0.378
0.367

0.265 0.452
0.258 0.439

0.542
0.526

0.542
0.530

0.454 0.580
0.459 0.572

0.685
0.688

Searching
S2S [11]
MSeaKG

0.372
0.392

0.277 0.439
0.290 0.468

0.533
0.553

0.528
0.561

0.457 0.570
0.475 0.591

0.690
0.705

evaluate the performance of a given GNN �
�
. Generally, the scoring

function � (� ; �) verifes the plausibility of fact � = � (�1, . . . , ��). A
good embedding � can make � (� ; �) to distinguish true or false for
a given fact � . Since the GNN �

� encodes G(�, �, �) into embedding
� as � = �

� (G), we build evaluation of �
� on � (�; �). Formally,

the GNN search problem for a given HKG G is formulated as:
min L(�

�
, �; G), (7)

�,�

where L(�
�
, �; G) =

Í
� ∈� ℓ (� (�; �)). We follow [10] to instanti-

ate ℓ (·) as cross entropy loss with label smoothing ratio.
Solving Eq. 7 is a non-trivial task because �

� is from a large
space. For example, just the structure space of {�� } reaches to

� �

� (2� | O |2+(2� +1) | O |). And �
� is discrete, indicating the gradient-

based optimization cannot be employed since ∇�Θ L(·) does not
exist. To enable an efcient search, we frst relax the parameters of
GNN model � from a discrete space into a continuous and proba-
bilistic space � ¯ . More specifcally, �� ∈ {0, 1} restrictively controls

� �

the connectivity between �� with �� −1, while � ̄� ∈ [0, 1] is the
� � � �

probability that �� is connected with �� −1. Then, let � ∼ � ̄ (�)
� � �

represent a GNN model � being sampled from the distribution
� ̄ (�). We reform the problem in Eq. 7 into:
�

min �� ∼�
� ¯ (�) [L(�, �; G)], (8)

¯
�,�

where � [·] is the expectation. Appx. A presents more details of
Eq. 8’s optimization. The overall search procedure of MSeaKG has
been summarized in Alg. 1.

4 EXPERIMENTS

4.1 Experimental Setup
The experiments are implemented on top of PyTorch [37] and per-
formed on one single RTX 2080 Ti GPU. Appx. B.1.1 introduces the
details of hyper-parameters.

Data Sets. The details of data sets are summarized into Tab. 8
in Appx. B.1.2. For experiments on facts with mixed arities (i.e.,
the arity � of facts in a data set may be diferent), we employ: 1)
Wiki-People [19] is a HKG {� (�1, �2, {(�� � , � �)}�

=3) :� ∈ {2, · · · , � }}
�

extracted from wiki-data; 2) JF17K [65] is the n-ary relational data
{� (�1, · · · , ��) : � ∈ {2, · · · , � }} extracted from Freebase [6]. Be-
cause Alg. 1 needs the validation data, we follow RAM [32] to split
the training set of JF17K into training and validation sets, which

difers from the original setting in [19, 40, 65]. For experiments
on facts with fxed arities (i.e., the arities of facts in a data set
are same), we utilize following data sets: 1) KGs: WN18RR [10],
FB15k237 [46], and YAGO3-10 [10] (� = 2); 2) NRD: WikiPeople-3
and JF17k-3 (� = 3), WikiPeople-4 and JF17k-4 (� = 4) [31]. Note
that GETD [31] removes roles and flters out 3-ary and 4-ary facts
from WikiPeople and JF17K to construct WikiPeople-� and JF17k-�.

Tasks and Evaluation Metrics. We compare KG/NRD/HKG
embedding models on the link and relation prediction task in the
transductive setting. The link prediction (LP) task is to predict the
missing entity in the given fact at � possible positions, e.g., pre-
dicting the 3rd missing entity � (�1, �2, (��3 , ?)) or � (�1, �2, ?). The
relation classifcation (RC) task needs to predict the missing rela-
tion in a fact when all entities are known, i.e., ?(�1, · · · , ��). We
employ Mean Reciprocal Ranking (MRR) [51] and Hit@{1, 3, 10}
(see Appx. B.1.3). Higher MRR and Hit@k values mean better em-
bedding quality.

Baselines. Although the space of MSeaKG is based on GNNs,
MSeaKG could cover other types of embedding models. Thus, we
include a set of non-GNN models into comparison.

• Geometric: Classic TransE [7] and RotatE [43] are for KG. RAE
[65] is an upgrade version of m-TransH [58].

• GNNs: We adopt R-GCN [41], CompGCN [49], G-MPNN [60]
and StarE [15] (Sec. 2.2). Note that we re-implement and tune
G-MPNN and StarE since their original tasks are diferent from
ours. G-MPNN follows the inductive setting and StarE only tests
the performance of main triplets in hyper-relational facts.

• Other NNs: NaLP [19], HINGE [40], and NeuInfer [18].
• Multi-linear: The fnal score of HypE [14] and RAM [32] is
computed by multi-way inner product which is extended from a
bilinear model DistMult [61].

• Tensor decomposition: TuckER [3] is based on Tucker decom-
position [48]. Then, we follow GETD [31] to include the exten-
sions n-CP [28] and n-TuckER [3] since they perform well on the
case of high arity. n-CP [28] leverages CP decomposition [21].

• Searching: Most of GNN searching models in Tab. 1 cannot be
applied to KGs since they cannot model relations. We employ
one recent GNN searching model AutoGEL [54] that can handle
KG. But AutoGEL [54] simply extends ��� (·) to embed edge in
KGs (see Tab. 1), thereby failing to handle more general cases

2638

Message Function Search for Knowledge Graph Embedding WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Table 3: The model comparison of LP task on facts with fxed arity � = 2 (i.e., KGs). The results of TransE, RotatE, DistMult, and
TuckER are copied from [39]. The reuslts of R-GCN is copied from [49]. Others are copied from original papers.

Type Model FB15k237 WN18RR YAGO3-10
MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

Geometric
TransE [7]
RotatE [43]

0.310
0.336

0.217 0.497
0.238 0.531

0.206
0.475

0.028 0.495
0.426 0.574

0.501
0.498

0.406 0.674
0.405 0.671

Bilinear
Tensor Decomp.

DistMult [61]
TuckER [3]

0.313
0.352

0.244 0.490
0.259 0.536

0.433
0.459

0.397 0.502
0.430 0.514

0.501
0.544

0.413 0.661
0.466 0.681

GNNs R-GCN [41]
CompGCN [49]

0.248
0.355

0.151 0.417
0.264 0.535

-
0.479

- -
0.443 0.546

-
-

- -
- -

Searching
AutoGEL [54]
MSeaKG

0.357
0.360

0.266 0.538
0.267 0.545

0.479
0.482

0.444 0.549
0.445 0.554

-
0.580

- -
0.505 0.708

Table 4: The model comparison of LP task on facts with fxed arity � = 3, 4 (i.e., NRD). The results of tensor decomposition
models are copied from [31], others are copied from [11].

Type Model WikiPeople-3 JF17K-3 WikiPeople-4 JF17K-4
MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10

Geometric RAE [65] 0.239 0.379 0.505 0.644 0.150 0.273 0.707 0.835

NNs
NaLP [19]
HINGE [40]
NeuInfer [18]

0.301 0.445
0.338 0.508
0.355 0.521

0.515 0.679
0.587 0.738
0.622 0.770

0.342 0.540
0.352 0.557
0.361 0.566

0.719 0.805
0.745 0.842
0.765 0.871

Tensor
Decomp.

n-CP [28]
n-TuckER [3]
GETD [31]

0.330 0.496
0.365 0.548
0.373 0.558

0.700 0.827
0.727 0.852
0.732 0.856

0.265 0.445
0.362 0.570
0.386 0.596

0.787 0.890
0.804 0.902
0.810 0.913

Searching
S2S [11]
MSeaKG

0.386 0.559
0.403 0.579

0.740 0.860
0.754 0.889

0.391 0.600
0.409 0.624

0.822 0.924
0.833 0.938

NRD and HKG. Besides, another searching method S2S [11] is
also included, which cannot be extended to handle HKG.

Note that we have included the references to baseline performance
in the captions of Tab. 2, 3, and 4. And some baselines are not
applicable to diferent KG forms, thus they cannot be consistently
compared on all tables.

Additional Experiments in Appendix. Due to the space limi-
tation, we include more experimental results in Appx. B.2 to provide
more insights, including relation prediction in Appx. B.2.1, ablation
study of the search algorithm in Appx. B.2.2, and sensitiveness anal-
ysis in Appx. B.2.3. Besides, Appx. B.3 presents searched message
functions that are data-dependent and can adapt to the given data.

4.2 Main Report for Efectiveness Comparison
The link prediction results on WikiPeople and JF17K have been
summarized into Tab. 2. And the relation prediction results are in
Tab. 9. Compared with Geometric and NNs methods, GNNs methods
achieve outstanding performance, which demonstrates the power
of GNNs on the graph tasks. And StarE generally is better than
G-MPNN in GNNs methods because the inner product way in G-
MPNN cannot handle several relational patterns as mentioned in
Sec. 1. Besides, although the multi-linear method RAM utilizes the
simple inner product as its scoring function, it carefully models the
role semantic information and interaction patterns, thus achieving
good performance. Overall, all existing methods cannot consistently
achieve the leading performance on diferent tasks and data sets.
In this paper, MSeaKG pursues the high model performance by
dynamically designing the most suitable message function for the
given data and task. The searched message functions can capture

data-level properties (see Fig. 5), thereby showing the leading per-
formance. Especially, the search space of another search method S2S
is based on the tensor modeling. Although S2S alleviates the exten-
sion issue of tensor modeling, its performance still slightly inferior.
Following the graph modeling, MSeaKG benefts from building a
message function search space in GNNs.

We also show link prediction results on data sets with fxed arity
in Tab. 3 (� = 2) and Tab. 4 (� = 3, 4). In Tab. 3, MSeaKG achieves
comparable results on common KGs because the message functions
do not need to be too complex to model facts with low arity. For
experiments on high arity in Tab. 4, we frst observe that classic
tensor decomposition models (n-CP, n-TuckER, GETD) perform
better than Geometric and NN-based methods. Then, S2S proposes
to dynamically sparsify the core tensor of tensor decomposition
models for the given data and further improve the performance of
tensor decomposition models. MSeaHKG still signifcantly improves
the performance of S2S even in the scenario of fxed arity. That
is because S2S simply assumes 3 relationships between entities
and relations in the search space: positive, irrelevant, and negative.
But the message function space in Sec. 3.1 could characterize more
complex interactions between entities and relations.
4.3 Ablation Study
Except for the main experimental results, here we report the per-
formance of several variants of MSeaKG (see Tab. 5) to investigate
some key designs in this paper, including MSeaKG�� , MSeaKG�� ,
MSeaKG�� for the search space, MSeaKG����� and MSeaKG�� for
the search algorithm. Due to the space limitation, Appx. B.2.2
presents the experimental settings of MSeaKG����� and MSeaKG��
with an analysis of efectiveness and efciency.

2639

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Di and Chen

Table 5: The comparison of variants of MSeaKG in the link prediction task on the case of mixed arity.

Type Model MRR
WikiPeople (HKG)
Hit@1 Hit@3 Hit@10 MRR

JF17K (NRD)
Hit@1 Hit@3 Hit@10

GNNs StarE
G-MPNN

0.378
0.367

0.265 0.452
0.258 0.439

0.542
0.526

0.542
0.530

0.454 0.580
0.459 0.572

0.685
0.688

Search
S2S
MSeaKG

0.372
0.392

0.277 0.439
0.291 0.468

0.533
0.553

0.528
0.561

0.457 0.570
0.475 0.591

0.690
0.705

Variants of
space

MSeaKG��

MSeaKG��

MSeaKG��

0.354
0.385
0.391

0.233 0.431
0.274 0.460
0.278 0.465

0.520
0.548
0.552

0.512
0.554
0.559

0.445 0.553
0.468 0.579
0.475 0.585

0.671
0.699
0.702

Variants of
algorithm

MSeaKG�����
MSeaKG��

0.373
0.380

0.275 0.445
0.281 0.457

0.535
0.542

0.554
0.558

0.460 0.588
0.472 0.590

0.697
0.701

Search Space. We frst present the confguration of variants:

• MSeaKG�� basically enables current GNN searching meth-
ods working on HKGs. Inspired by R-GCN (see Eq. 3), we
frst replace the transform matrix � in ��� (·) (see Eq. 1)
to �� . Then, we concatenate the entity embeddings as � =
������ (�1, . . . , ��, 0, . . . , 0). Note that the number of zero em-
beddings 0 is equal to � − �. We utilize the message function
��� (� (�1, . . . , ��)) = �� � to replace Eq. 6. Other steps are same
with original version.

• MSeaKG�� only searches operations of operators � and � in
�� �� ��(·; �) (i.e., � = {� } ∪ {� }), while keeping the structure of
� �

StarE’s message functions. Other steps are same with original
version.

• MSeaKG�� only searches structures of the proposed message
function ��(·; �), and sets �,� to ����,���� respectively (i.e.,
� = {�� }). The fxed operations are selected based on better em-

� �
pirical performance. Other steps are same with original version.

From Tab. 5, we observe that the simple extension version
MSeaKG�� even cannot achieve as good performance as existing
GNNs (e.g., StarE and G-MPNN). This verifes the claim that the sim-
ple message function in the existing GNN searching method (e.g.,
AutoGEL [54] discussed in Sec. 2.2) may not be able to handle the
complex correlations between relations and entities on HKGs (see
Tab. 3 for more comparison on KGs). Moreover, MSeaKG�� keeps
the same message function structure with StarE but searches suit-
able operations. Difer from manually tuning operations in StarE,
the automatic way is more powerful so that MSeaKG�� achieves
a minor improvement compared with StarE. As for MSeaKG�� , it
can search for more fexible structures of message functions for the
given data and achieve the best performance among several vari-
ants. It can illustrate that the message function design is important
to KG embedding. However, MSeaHKG�� is still slightly inferior
compared with the original version of MSeaKG. This shows that
the best structure and operations are dependent. Simply fxing op-
erations to search the structure may lead to the sub-optimal results.

Scoring Functions. There are many scoring functions that can
be utilized to decode embeddings into score, such as DistMult [61]
and Transformer [50]. In principle, MSeaKG can implement most
existing scoring functions as its decoder. In this paper, we simply
concatenate the embeddings of known entities and relations in
a fact and feed it into a two-layer MLP. That is mainly because
the message function space has the strong capability to capture

Table 6: The model comparison of variants of MSeaKG in
terms of adopted scoring functions.

Scoring
Function

MRR Perfo
WikiPeople

rmance
JF17K

Searching Ti
WikiPeople

me (in hours)
JF17K

MLP 0.392 0.561 30.9 7.7
DistMult 0.377 0.522 28.1 7.1
Transformer 0.381 0.548 92.8 18.5

the interactions between entities and relations. And some classic
scoring functions are covered by MSeaKG (see Fig. 3).

As shown in Tab. 6, we investigate the infuence of scoring func-
tions on the searching efectiveness and efciency. We can observe
that the MLP version achieves best efectiveness and comparable
efciency. During search, MSeaKG samples diferent architectures,
uses the sampled architecture to learn embeddings, then forward
embeddings to scoring functions for calculating fnal scores. It is
intuitive that the transformer version consumes more time than
the versions of MLP and DistMult. Hence, the transformer version
is hard to achieve the feedback of sampled architectures, which
lead to insufcient training compared with the MLP version. As for
the DistMult version, its capability is inferior since it cannot cover
some relational patterns. Thus, we use a simple scoring function
for the sake of efectiveness and efciency.
5 CONCLUSION
In this paper, we propose a new searching method for KG embed-
ding, named MSeaKG. First, we present a novel search space of
message functions, which allows KG/NRD/HKG forms as inputs.
By enabling the structure search and operation selection, some
classic KG embedding models and existing message functions for
KG/NRD/HKG could be instantiated as special cases of our space.
Then, we leverage an efcient algorithm to search the message
function and other GNN components for the given data. Experi-
mental results show that MSeaKG can consistently achieve leading
performance on benchmark KGs, NRD, and HKGs by designing
data-aware message functions.

One limitation of MSeaKG is not covering the path-based
GNNs [72], which aggregate messages from paths instead of neigh-
bors. This is a worthwhile direction to try, although in the case of
NRD and HKG, the path concept in graph is more complex. More-
over, MSeaKG tends to ft those relations with a large proportion of
KGs for high performance, while ignoring those rare relations. Thus,
another future direction is expected to search multiple message
functions to alleviate this issue.

2640

Message Function Search for Knowledge Graph Embedding WWW ’23, April 30–May 04, 2023, Austin, TX, USA

ACKNOWLEDGMENTS
Lei Chen is partially supported by National Science Foundation
of China (NSFC) under Grant No. U22B2060 and 61729201, Na-
tional Key Research and Development Program of China Grant
No. 2021YFE020339, the Hong Kong RGC GRF Project 16213620,
RIF Project R6020-19, AOE Project AoE/E-603/18, Theme-based
project TRS T41-603/20R, Guangdong Basic and Applied Basic Re-
search Foundation 2019B151530001, Hong Kong ITC ITF grants
MHX/078/21 and PRP/004/22FX, Microsoft Research Asia Collabo-
rative Research Grant and HKUST-Webank joint research lab grants.
Shimin Di is supported by the JC STEM Lab of Data Science Foun-
dations funded by The Hong Kong Jockey Club Charities Trust.

REFERENCES
[1] Youhei Akimoto, Shinichi Shirakawa, Nozomu Yoshinari, Kento Uchida, Shota

Saito, and Kouhei Nishida. 2019. Adaptive stochastic natural gradient method
for one-shot neural architecture search. In ICML.

[2] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. 2007. Dbpedia: A nucleus for a web of open data. In The
Semantic Web. Springer, 722–735.

[3] I. Balazevic, C. Allen, and T. Hospedales. 2019. TuckER: Tensor Factorization for
Knowledge Graph Completion. In EMNLP. 5188–5197.

[4] J. Bergstra, D. Yamins, and D. D. Cox. 2013. Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision architectures.
(2013).

[5] Max Berrendorf, Evgeniy Faerman, Laurent Vermue, and Volker Tresp. 2020. On
the ambiguity of rank-based evaluation of entity alignment or link prediction
methods. arXiv preprint arXiv:2002.06914 (2020).

[6] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
2008. Freebase: a collaboratively created graph database for structuring human
knowledge. In SIGMOD. 1247–1250.

[7] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. 2013.
Translating embeddings for modeling multi-relational data. In NIPS. 2787–2795.

[8] Yixin Cao, Xiang Wang, Xiangnan He, Zikun Hu, and Tat-Seng Chua. 2019.
Unifying knowledge graph learning and recommendation: Towards a better
understanding of user preferences. In WWW. 151–161.

[9] Xiangxiang Chu, Tianbao Zhou, Bo Zhang, and Jixiang Li. 2020. Fair darts:
Eliminating unfair advantages in diferentiable architecture search. In ECCV.
Springer, 465–480.

[10] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. 2018.
Convolutional 2D knowledge graph embeddings. In AAAI.

[11] Shimin Di, Quanming Yao, and Lei Chen. 2021. Searching to Sparsify Tensor
Decomposition for N-ary Relational Data. In Webconf. 4043–4054.

[12] Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, et al. 2019. Neural architecture
search: A survey. J. Mach. Learn. Res. 20, 55 (2019), 1–21.

[13] Stefan Falkner, Aaron Klein, and Frank Hutter. 2018. BOHB: Robust and efcient
hyperparameter optimization at scale. In ICML. PMLR, 1437–1446.

[14] Bahare Fatemi, Perouz Taslakian, David Vazquez, and David Poole. 2020. Knowl-
edge hypergraphs: Prediction beyond binary relations. (2020).

[15] Mikhail Galkin, Priyansh Trivedi, Gaurav Maheshwari, Ricardo Usbeck, and Jens
Lehmann. 2020. Message Passing for Hyper-Relational Knowledge Graphs. In
EMNLP.

[16] Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue Hu. 2020. Graph
neural architecture search. In IJCAI, Vol. 20. 1403–1409.

[17] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural message passing for quantum chemistry. In ICML. PMLR,
1263–1272.

[18] Saiping Guan, Xiaolong Jin, Jiafeng Guo, Yuanzhuo Wang, and Xueqi Cheng.
2020. Neuinfer: Knowledge inference on n-ary facts. In ACL. 6141–6151.

[19] Saiping Guan, Xiaolong Jin, Yuanzhuo Wang, and Xueqi Cheng. 2019. Link
prediction on n-ary relational data. In WWW. 583–593.

[20] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NeurIPS. 1025–1035.

[21] Frank L Hitchcock. 1927. The expression of a tensor or a polyadic as a sum of
products. Journal of Mathematics and Physics 6, 1-4 (1927), 164–189.

[22] F. Hutter, L. Kotthof, and J. Vanschoren. 2018. Automated Machine Learning:
Methods, Systems, Challenges. Springer.

[23] Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical reparameterization
with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016).

[24] Shengli Jiang and Prasanna Balaprakash. 2020. Graph Neural Network Architec-
ture Search for Molecular Property Prediction. In IEEE Big Data. IEEE, 1346–1353.

[25] S. Kazemi and D. Poole. 2018. Simple embedding for link prediction in knowledge
graphs. In NeurIPS. 4284–4295.

[26] D.P. Kingma and J. Ba. 2014. Adam: A method for stochastic optimization. In
ICLR.

[27] Thomas N Kipf and Max Welling. 2016. Semi-supervised classifcation with graph
convolutional networks. In ICLR.

[28] T. Lacroix, N. Usunier, and G. Obozinski. 2018. Canonical Tensor Decomposition
for Knowledge Base Completion. In ICML. 2863–2872.

[29] Haoyang Li, Shimin Di, Zijian Li, Lei Chen, and Jiannong Cao. 2022. Black-
box Adversarial Attack and Defense on Graph Neural Networks. In ICDE. IEEE,
1017–1030.

[30] H. Liu, K. Simonyan, and Y. Yang. 2018. DARTS: Diferentiable architecture
search. In ICLR.

[31] Yu Liu, Quanming Yao, and Yong Li. 2020. Generalizing Tensor Decomposition
for N-ary Relational Knowledge Bases. In WebConf. 1104–1114.

[32] Yu Liu, Quanming Yao, and Yong Li. 2021. Role-Aware Modeling for N-ary
Relational Knowledge Bases. In WebConf 2021. 2660–2671.

[33] Denis Lukovnikov, Asja Fischer, Jens Lehmann, and Sören Auer. 2017. Neural
network-based question answering over knowledge graphs on word and character
level. In WWW. 1211–1220.

[34] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. 2017. The concrete distribu-
tion: A continuous relaxation of discrete random variables. ICLR (2017).

[35] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. 2015.
A review of relational machine learning for knowledge graphs. Proc. IEEE 104, 1
(2015), 11–33.

[36] Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. 2016. Holographic
embeddings of knowledge graphs. In AAAI.

[37] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z.
Lin, N. Gimelshein, L. Antiga, et al. 2019. PyTorch: An imperative style, high-
performance deep learning library. In NeurIPS. 8024–8035.

[38] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean. 2018. Efcient Neural Architecture
Search via Parameter Sharing. In ICML. 4092–4101.

[39] Andrea Rossi, Denilson Barbosa, Donatella Firmani, Antonio Matinata, and Paolo
Merialdo. 2021. Knowledge graph embedding for link prediction: A comparative
analysis. TKDD 15, 2 (2021), 1–49.

[40] Paolo Rosso, Dingqi Yang, and Philippe Cudré-Mauroux. 2020. Beyond triplets:
hyper-relational knowledge graph embedding for link prediction. In WebConf.
1885–1896.

[41] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In ESWC. Springer, 593–607.

[42] DI Shimin, YAO Quanming, Yongqi ZHANG, and CHEN Lei. 2021. Efcient
Relation-aware Scoring Function Search for Knowledge Graph Embedding. In
ICDE. IEEE, 1104–1115.

[43] Z. Sun, Z. Deng, J. Nie, and J. Tang. 2019. RotatE: Knowledge graph embedding
by relational rotation in complex space. In ICLR.

[44] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. 2018. RotatE: Knowl-
edge Graph Embedding by Relational Rotation in Complex Space. In ICLR.

[45] Zhiqing Sun, Shikhar Vashishth, Soumya Sanyal, Partha Talukdar, and Yiming
Yang. 2020. A Re-evaluation of Knowledge Graph Completion Methods. In ACL.
5516–5522.

[46] K. Toutanova and D. Chen. 2015. Observed versus latent features for knowledge
base and text inference. In Workshop on CVSMC. 57–66.

[47] T. Trouillon, Christopher R., É. Gaussier, J. Welbl, S. Riedel, and G. Bouchard.
2017. Knowledge graph completion via complex tensor factorization. JMLR 18, 1
(2017), 4735–4772.

[48] Ledyard R Tucker. 1966. Some mathematical notes on three-mode factor analysis.
Psychometrika 31, 3 (1966), 279–311.

[49] Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. 2019.
Composition-based Multi-Relational Graph Convolutional Networks. In ICLR.

[50] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS. 5998–6008.

[51] Ellen Voorhees. 1999. The TREC-8 question answering track report. In TREC,
Vol. 99. 77–82.

[52] Hongwei Wang, Hongyu Ren, and Jure Leskovec. 2020. Entity context and
relational paths for knowledge graph completion. arXiv:2002.06757 (2020), 47.

[53] Q. Wang, Z. Mao, B. Wang, and L. Guo. 2017. Knowledge graph embedding: A
survey of approaches and applications. TKDE 29, 12 (2017), 2724–2743.

[54] Zhili Wang, Shimin Di, and Lei Chen. 2021. AutoGEL: An Automated Graph
Neural Network with Explicit Link Information. Advances in Neural Information
Processing Systems 34 (2021), 24509–24522.

[55] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge
graph embedding by translating on hyperplanes. In AAAI.

[56] Lanning Wei, Huan Zhao, and Zhiqiang He. 2022. Designing the topology of
graph neural networks: A novel feature fusion perspective. In Proceedings of the
ACM Web Conference 2022. 1381–1391.

2641

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Di and Chen

[57] Lanning Wei, Huan Zhao, Quanming Yao, and Zhiqiang He. 2021. Pooling archi-
tecture search for graph classifcation. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management. 2091–2100.

[58] Jianfeng Wen, Jianxin Li, Yongyi Mao, Shini Chen, and Richong Zhang. 2016. On
the representation and embedding of knowledge bases beyond binary relations.
In IJCAI.

[59] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. 2018. SNAS: stochastic
neural architecture search. arXiv preprint arXiv:1812.09926 (2018).

[60] Naganand Yadati. 2020. Neural Message Passing for Multi-Relational Ordered
and Recursive Hypergraphs. NeurIPS 33 (2020).

[61] B. Yang, W. Yih, X. He, J. Gao, and L. Deng. 2015. Embedding entities and relations
for learning and inference in knowledge bases. In ICLR.

[62] Quanming Yao and Mengshuo Wang. 2018. Taking human out of learning
applications: A survey on automated machine learning. (2018).

[63] Jiaxuan You, Zhitao Ying, and Jure Leskovec. 2020. Design space for graph neural
networks. NeurIPS 33 (2020).

[64] Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, and
Frank Hutter. 2019. Understanding and robustifying diferentiable architecture
search. arXiv preprint arXiv:1909.09656 (2019).

[65] Richong Zhang, Junpeng Li, Jiajie Mei, and Yongyi Mao. 2018. Scalable instance
reconstruction in knowledge bases via relatedness afliated embedding. In WWW.
1185–1194.

[66] Yongqi Zhang and Quanming Yao. 2022. Knowledge graph reasoning with
relational digraph. In Proceedings of the ACM Web Conference 2022. 912–924.

[67] Yongqi Zhang, Quanming Yao, and Lei Chen. 2020. Interstellar: Searching recur-
rent architecture for knowledge graph embedding. Advances in Neural Informa-
tion Processing Systems 33 (2020), 10030–10040.

[68] Yongqi Zhang, Quanming Yao, Wenyuan Dai, and Lei Chen. 2020. AutoSF:
Searching Scoring Functions for Knowledge Graph Embedding. In ICDE. 433–
444.

[69] Ziwei Zhang, Xin Wang, and Wenwu Zhu. 2021. Automated Machine Learning
on Graphs: A Survey. arXiv preprint arXiv:2103.00742 (2021).

[70] Huan Zhao, Quanming Yao, and Weiwei Tu. 2021. Search to aggregate neighbor-
hood for graph neural network. arXiv preprint arXiv:2104.06608 (2021).

[71] Kaixiong Zhou, Qingquan Song, Xiao Huang, and Xia Hu. 2019. Auto-gnn: Neural
architecture search of graph neural networks. arXiv preprint arXiv:1909.03184
(2019).

[72] Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. 2021.
Neural bellman-ford networks: A general graph neural network framework for
link prediction. NeurIPS 34 (2021), 29476–29490.

A FULL DERIVATION INVOLVED IN SEC. 3.2
To compute the gradient w.r.t. � ¯ , we frst utilize the reparameteri-
zation trick � = � ̄ (�) [59], where � is sampled from a uniform

�
distribution � (�). Then the gradient w.r.t. � ¯ and � is computed as:
∇
� ¯ �� ∼�

� ¯ (�) [L(�, �; G)] = ∇
� ¯ �� ∼� (�) [L(� ̄ (�), �; G)] (9)∫ ∫ �

= ∇ ̄ � (�)L(� ̄ (�), �; G)�� = � (�)∇ ̄ L(� ̄ (�), �; G)��
� � � �

= �� ∼� (�) [∇ ̄ L(� ̄ (�), �; G)] = �� ∼� (�) [L ′ (� ̄ (�), �; G)∇
� ¯ � ̄

� � � � ∫
∇� �� ∼�

� ¯ (�) [L(�, �; G)] = ∇� �
� ¯ (�)L(�, �; G)�� ∫

= �
� ¯ (�)∇� L(�, �; G)�� = �� ∼�

� ¯ (�) [∇� L(�, �; G)] .
(10)

Table 7: List of hyper-parameters in main experiments.

learning rate
MPNN layers
�
batch size
dim. �
dropout ratio
label smooth. �

LP RP
WP
0.0001

2
4
256
256
0.15
0.3

JK
0.001
2
4
128
256
0.2
0.8

W-3
0.0001

1
3
128
128
0.1
0.7

J-3
0.001
1
2
128
128
0.1
0.5

W-4
0.0001

1
2
256
256
0.05
0.8

J-4
0.0001

1
3
128
128
0.15
0.7

WP
0.0001

2
4
256
128
0.2
0.1

JK
0.001
2
4
128
128
0.15
0.1

Table 8: The statistical summary on data sets.
data setrole# all / � > 2 facts � # ent # rel train valid test

JK
WP

×√ 100,947 / 46,320
382,229 / 44,315

2/6
2/9

28,645
47,765

322
707

61,104
305,725

15,275
38,223

24,568
38,281

W-18
F-237
YG-3
J-3
J-4
W-3
W-4

×
×
×
×
×
×
×

93,003 / 0
310,116 / 0
1,089,040 / 0
34,544 / 34,544
9,509 / 9,509
25,820 / 25,820
15,188 / 15,188

2/2
2/2
2/2
3/3
4/4
3/3
4/4

40,943
14,541
123,188
11,541
6,536
12,270
9,528

11
237
37
104
23
66
50

86,835
272,115
1,079,040
27,635
7,607
20,656
12,150

3,034
17,535
5,000
3,454
951
2,582
1,519

3,134
20,466
5,000
3,455
951
2,582
1,519

1 2 3 4 5 6 7 8 910 15 20
Sampled architectures in step 7 of Alg. 1

0.32

0.34

0.36

0.38

0.40

M
RR

Final Tst MRR

1 2 3 4 5 6 7 8 910 15 20
Sampled architectures in step 7 of Alg. 1

0.50
0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58

M
RR

Final Tst MRR

(a) WikiPeople. (b) JF17K.

Figure 4: Testing MRR v.s. the number of sampled architec-
tures in step 7 of Alg. 1.

Note that ∇
� ¯ �� ¯ (�) can be computed if �

� ¯ (�) is diferentiable. we
build the reparameterization trick � = � ̄ (�) based on Gumbel-

�
Softmax [23] or Concrete distribution [34]. For clarity, we simplify
¯
� to the parameter � ̄ for a specifc operator space O:

exp((log � ̄ � − log(− log(��)))/���)
�� = � ̄ (�) = Í ,�

′ ∈O exp((log � ̄ � ′ − log(− log(�� ′)))/���)
(11)

where ��� is the temperature of softmax, and �� ∼ � �� � ���(0, 1).
¯ ¯

�

It has been proven that � (lim���→0 �� = 1) = �� /
Í

�� ′ mak-� ′ ∈O
ing the stochastic diferentiable relaxation unbiased once converged
[59]. And the details of ∇ ̄ � ̄ (�) can refer to [59].

� �

B MORE EXPERIMENTS

B.1 Experimental Setup
B.1.1 Hyper-parameter Setings and Related Discussion. We have

(�)],summarized the hyper-parameters of this paper in Tab. 7. The
hyper-parameter set includes Adam optimizer [26], learning rate
∈ {0.1, 0.01, 0.001, 0.0001, 0.00001}, # MPNN layers ∈ {1, 2, 3, 4} (see
left part of Fig. 2), # layers in message functions � ∈ {1, 2, 3, 4, 5}
(see right part of Fig. 2), batch size ∈ {64, 128, 256, 512}, embedding
dimension � ∈ {64, 128, 256, 512}, dropout ratio ∈ {0, 0.05, 0.1, 0.15,
. . . , 0.5}, label smoothing ratio � ∈ {0, 0.1, 0.2, . . . , 0.9}. Note that
the label smoothing ratio � is employed to relax the one-hot label
vector �. In practical, we set �� = 1 − � for the ground truth en-
tity/relation, while �� = �/|� |−1 for link prediction and �� = �/|� |−1

for relation prediction. That is because there are usually a large can-
didate space for relations and entities, while Using one-hot vector is
quite restrictive. The hyper-parameters of MSeaKG/G-MPNN/StarE
are tuned with the help of optuna.samplers.TPESampler [4, 13]1.

1https://optuna.readthedocs.io/en/stable/reference/samplers/index.html

2642

https://optuna.readthedocs.io/en/stable/reference/samplers/index.html

Message Function Search for Knowledge Graph Embedding WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Table 9: The model comparison of the relation prediction task on the arity of mixed case. The results of NNs are copied from
[18], others are based on our implementations.

Type Model MRR
WikiPeople (HKG)
Hit@1 Hit@3 Hit@10 MRR

JF17K (NRD)
Hit@1 Hit@3 Hit@10

NNs NaLP [19]
NeuInfer [18]

0.735
0.765

0.595 -
0.686 -

-
-

0.825
0.861

0.762 -
0.832 -

-
-

GNNs StarE [15]
G-MPNN [60]

0.800
0.777

0.753 0.936
0.694 0.905

0.951
0.912

0.901
0.864

0.884 0.929
0.842 0.883

0.963
0.917

Searching
S2S [11]
MSeaKG

0.813
0.828

0.744 0.928
0.784 0.951

0.960
0.970

0.912
0.932

0.877 0.932
0.893 0.948

0.951
0.971

B.1.2 Data Statistics. As shown in Tab. 8, we present the statistic
summary of the benchmark data sets adopted in this paper.

B.1.3 Evaluation Measurement. As in [7, 55], we report perfor-
mance under the “fltered” setting, i.e., evaluating the rank of test
fact after removing all corrupted facts that exist in the train, valid,
and test data set. That is because true facts in data set should be
not considered as faults when evaluating a test fact. Let rank�,�
denote the rank of ground truth entity at position � of �-th fact
� = (�, �1, . . . , ��) (see more discussions about policy in [5, 39, 45]):

rank+ = |{� ′ ∈ � \{�� } : � (� ′ ; �) > � (�; �) ∩ � ′ ∉ �}| + 1,�,�

rank− = |{� ′ ∈ � \{�� } : � (� ′ ; �) ≥ � (�; �) ∩ � ′ ∉ �}|,�,�

where � ′ = (�, �1, . . . , ��−1, � ′ = 2 (rank
+

rank−) [5]. Then we adopt the classical metrics [7, 55]:
, . . . , ��) and rank�,�

1
�,� +

�,� Í |� | Í� • Mean Reciprocal Ranking (MRR): 1/� |� | �=1 1/rank�,� ;�=1 Í |� |• Hit@1, Hit@3, and Hit@10, where Hit@k is given by 1/|� |
�=1Í

�
�
=1 I(rank�,� ≤�) and I(·) is the indicator function.

B.2 More Experimental Results
B.2.1 Relation Prediction. Due to the space limit, we put the results
of the relation prediction here. Tab. 9 reports the model performance
of the relation prediction task on the mixed case of KGs (HKG
and NRD), which also demonstrates the efectiveness of MSeaKG
compared with baselines.

B.2.2 Ablation Study of Search Algorithm. In this paper, we adopt
one-shot NAS search algorithms due to the searching efciency (see
more discussion in Sec. 2.1). Existing one-shot NAS algorithms can
be roughly categorized into: stochastic diferentiable method (e.g.,
SNAS [59]), deterministic diferentiable method (e.g., DARTS [30]),
and policy gradient-based method (e.g., ENAS [38], ASNG [1]). Here,
we implement two more variants, MSeaKG����� based on DARTS
and MSeaKG�� based on ASNG, to investigate the performance of
other NAS search algorithms in our application scenario.
• MSeaKG����� follows DARTS to directly relax � to learnable
parameters. Then, the computation in DAG (see Eq. 5) will be re-()Í | O |

=1 �
� �� −1 , �� = �� Í|O| formed to: ��

� =
� � � ·��

�
� � � � �/ � ′ =1

�
� �
�
′ . Then, we

can minimize the loss L(�, �; G) through the gradient ∇
�
L(·).

• MSeaKG�� follows the policy gradient-based NAS
search algorithm to derive: ∇ ̄ �� ∼�

� ¯ (�) [L(�, �; G)] =
�

∇
� ¯ �� ∼� ̄ (�) [L(�, �; G)∇� ¯ log � ̄ (�)]. We utilize ASNG [1],

� �
which implements the fsher information matrix in ∇

� ¯ log �
� ¯ (�)

for fast convergence.

Figure 5: The searched message functions by MSeaKG.

We here analyze the model comparison between original
MSeaKG with its variants MSeaKG�� and MSeaKG����� . From Tab. 5
and Tab. 10, we observe that MSeaKG and MSeaKG�� have better
performance than MSeaKG����� in both efectiveness and efciency
comparisons. First, DARTS aims to train a supernet by mixing all
candidate operations during the searching phase, then it will derive
a discrete architecture after fnishing the search. But the weights
[� �] cannot cannot converge to a one-hot vector, which lead to
�

performance collapse after removing |O − 1| operations in O [9, 64].
Second, it will consume more computational resources when main-
taining all operations during the search. Instead, MSeaKG and
MSeaKG�� train discrete architectures in searching (the bounded
discreteness of MSeaKG is discussed in Appx. A), which avoids
performance collapse and large computational overhead. As for the
comparison between MSeaKG with MSeaKG�� , MSeaKG achieves
slight improvements. That is mainly because MSeaKG directly cal-
culates the gradient w.r.t. � ¯ from the loss L(·), while MSeaKG��
takes the loss L(·) as a reward to feed it to a reinforcement learning
controller.

B.2.3 Sensitive analysis on the number of sampled architectures.
Before deriving the fnal architecture, MSeaKG samples several
architectures (step 7 in Alg. 1) since the stochastic algorithm may
output diferent models. We investigate the infuence of the diferent
numbers of sampled architectures. As shown in Fig. 4, the model
performance may not be good enough if the number of samples is
too less, But overall, MSeaKG is not sensitive to this parameter.

B.3 Data-aware Model for Relational Patterns
As shown in Fig. 5, we demonstrate several message functions
searched by MSeaKG on WN18RR, FB15k237 and JF17K-3. We can
observe that the message functions are data-dependent, which can
capture the relational patterns in diferent data sets. For example,
the message function searched on WN18RR is the exact RotatE

2643

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Di and Chen

Table 10: The training time comparison (in hours) of GNN-based models in the link prediction task on HKGs.

Type Model Mixed Arity Arity=3 Arity=4
WikiPeople JF17K W-3 J-3 W-4 J-4

Search MSeaKG 30.9 ± 4.7 7.7 ± 1.8 1.8 ± 0.4 1.4 ± 0.2 0.9 ± 0.1 1.1 ± 0.2
Variants of MSeaKG����� 40.2 ± 2.5 11.5 ± 2.2 2.5 ± 0.5 2.1 ± 0.3 1.5 ± 0.2 1.3 ± 0.1
algorithm MSeaKG�� 35.1 ± 3.0 10.3 ± 1.7 2.3 ± 0.3 1.5 ± 0.2 1.4 ± 0.2 1.1 ± 0.1

Table 11: The MRR performance of models tested on relation-
level of DDB14 [52].

Symmetry Asymmetry Overall relation name may be allelic with belong(s) to may cause
ratio in S��� 0.7% 20.4% 61.9% 100.0%
TransE 0.00 0.19 0.20 0.18
DistMult 0.19 0.21 0.25 0.20
MSeaKG 0.08 0.25 0.30 0.26

model [43], which has been proven to cover symmetric relations
(37% in WN18RR).

One motivation behind this paper is to pursue a message function
that can adapt to the relational patterns in the given KG/NRD/HKG.
To verify it, we conduct experiments on a medical KG DDB14 [52].
It contains the terminologies such as drugs, symptoms, diseases
and their relationships. As shown in Tab. 11, MSeaKG focuses on
those relations with high ratio (e.g., may cause) in the given KG to
pursue the high performance. It will adapt to those relations that
are mostly present in the data. In other words, the message function
optimized by MSeaKG is very fexible to handle relation patterns
since the optimized one can consistently evolve for the given data.

2644

	Abstract
	1 Introduction
	2 Related Work
	2.1 Graph Neural Network Searching Methods
	2.2 Graph Neural Networks for KG Embedding

	3 MSeaKG
	3.1 Search Space Design
	3.2 Search Algorithm Design

	4 Experiments
	4.1 Experimental Setup
	4.2 Main Report for Effectiveness Comparison
	4.3 Ablation Study

	5 Conclusion
	Acknowledgments
	References
	A Full Derivation involved in Sec. 3.2
	B More Experiments
	B.1 Experimental Setup
	B.2 More Experimental Results
	B.3 Data-aware Model for Relational Patterns

