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ABSTRACT 
Recently, many promising embedding models have been proposed 
to embed knowledge graphs (KGs) and their more general forms, 
such as n-ary relational data (NRD) and hyper-relational KG (HKG). 
To promote the data adaptability and performance of embedding 
models, KG searching methods propose to search for suitable mod-
els for a given KG data set. But they are restricted to a single KG 
form, and the searched models are restricted to a single type of em-
bedding model. To tackle such issues, we propose to build a search 
space for the message function in graph neural networks (GNNs). 
However, it is a non-trivial task. Existing message function designs 
fx the structures and operators, which makes them difcult to han-
dle diferent KG forms and data sets. Therefore, we frst design a 
novel message function space, which enables both structures and 
operators to be searched for the given KG form (including KG, NRD, 
and HKG) and data. The proposed space can fexibly take diferent 
KG forms as inputs and is expressive to search for diferent types 
of embedding models. Especially, some existing message function 
designs and some classic KG embedding models can be instanti-
ated as special cases of our space. We empirically show that the 
searched message functions are data-dependent, and can achieve 
leading performance on benchmark KGs, NRD, and HKGs. 

CCS CONCEPTS 
• Information systems → Web searching and information discov-
ery; • Computing methodologies → Knowledge representa-
tion and reasoning; Machine learning algorithms. 
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1 INTRODUCTION 
Web-scale knowledge graphs (KGs) [2] have attracted much atten-
tion due to their widespread existence, which have promoted a 
series of web applications such as recommendation system [8] and 
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question answering [33]. Generally, KGs store and organize human 
knowledge with the form of binary fact � (�1, �2) that represents the 
relation � between entities �� , e.g., playIn(Leonard,StarTrek1). 
More recently, researchers observe that binary facts are only a 
part of knowledge bases. For example, more than 30% of entities 
in Freebase [6] involve facts that contain more than 2 entities [58]. 
Thus, research communities start to learn more general forms of 
KGs, such as n-ary relational data (NRD) � = {� (�1, . . . , �� )} [19, 31] 
(e.g., playInCharacter(Leonard, StarTrek1,Spock)) and hyper-
relational KG (HKG) � = {� (�1, �2, {(�� � , � � )}� 

=3)} [15, 40] (e.g., � 
playInCharacter(Leonard,StarTrek1,(character:Spock)). 

To manipulate web-scale KG/NRD/HKG, various promising em-
bedding models [35, 39, 53] have been proposed to encode sets 
of relations � and entities � into �-dimensional vector space 
∈ R |� |×� ∈ R |� |×� � , � , such as geometric models [7, 43, 58], 

neural network models [19, 40, 49], bilinear models [25, 47, 61], and 
more general tensor decomposition models [3, 28, 31]. However, 
these methods follow the classical way to design a universal model 
for diferent data sets. But due to the diversity of data sets [53], 
an embedding model that performs well on one data set may not 
adapt well to another one [39, 68]. To tackle this data-aware is-
sue, KG searching models [11, 42, 68] promote the adaptability of 
embedding models by searching appropriate models for the given 
data. 

Despite the success of KG searching models [11, 42, 67, 68], there 
are two major limitations of them. First, existing searching models 
are strictly restricted to one KG form. They cannot be applied or 
extended to diverse KG forms. This obviously limit the data adapt-
ability of searching models. Second, the search space of current 
searching models is only based on tensor decomposition models, 
i.e., only tensor decomposition models can be searched. This de-
sign may limit the performance of searched models since there are 
many other types of promising embedding models. Therefore, a 
more fexible and expressive search space is needed to search for 
embedding models on diverse KG forms. 

Recently, some pioneer embedding models [15, 41, 60] have de-
signed domain-specifc message functions in powerful graph neural 
networks (GNNs) [20, 27, 29] by capturing the interaction between 
entities and relations (see Fig. 1). Inspired by their success, we 
may be able to build a fexible and expressive search space on the 
message functions. Unfortunately, it is a non-trivial task because 
existing message function designs are rigid. First, in GNNs for KG 
embedding works, their message functions manually design and 
fx the structures and operators, which are infexible to handle di-
verse KG forms and not conducive to handling complex relational 
patterns in diferent KG data sets. As shown in Fig. 1, their mes-
sage functions fx the input forms, such as CompGCN [49] for KG, 
G-MPNN [60] for NRD, StarE [15] for HKG. Moreover, under a 
KG form, relations usually have distinct patterns in diferent KG 
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Table 1: Overview of the existing GNN-based works. NC, GC, LP, RP denote node classifcation, graph classifcation, link 
prediction, relation prediction, respectively. “Data-aware” measures whether the structures and operators of message function 
change for diferent inputs. �� (·) is dropout; �� (·) is batch normalization; �̄ (·) summarizes mixed operations [70]; �� denotes

� 
the output from �-th operator of O in �-th layer of the message function (see Sec. 3.1); other notations can be checked in Sec. 2. 

Type Model Scenarios Message Function 
Task # Edge Types # Edge Length KG Form Data-aware Function 

GNNs 
Searching 

You et al. [63] 
GraphNAS [16] 
AGNN [71] 
SANE [70] 

NAS-GCN [24] 
AutoGEL [54] 

NC/GC/LP 
= 1 = 2 

N/A 

× 
× 
× 
× 
× 
× 

�� (�� (� � � + �)) 
�� ������� (�� , � � )
�� � � � � 
� ̄� ({� � }� � ∈� (�� ) )
�� � ��� (�� � )� � 
�(� ) � (� � , �) 

NC 

≥ 1 = 2GC 
NC/GC/LP KG 

GNNs for 
KGs 

R-GCN [41] 
CompGCN [49] 
G-MPNN [60] 
StarE [15] 

LP/RP 
≥ 1 = 2 KG 

× 
× 
× 
× 

�� � � 
�� (� )� (� � , �)Î 
�� (� ) ∗ � ��� ∗ �� 
�� (� )�� (�� , � (�, �� )) 

≥ 1 ≥ 2 
NRD 
HKG 

Ours MSeaKG LP/RP ≥ 1 ≥ 2 KG/NRD/HKG 
√ }| O |

���&������ ({�� 
� �=1 ) 

data sets, which brings difculties for the fxed message function to 
adapt to diferent KG data sets. For example, the message function 
of G-MPNN [60] adopts the inner product way like DistMult [61] 
to compute the correlation between entities and relations, which 
has been proven to only cover symmetric relations [25]. Its perfor-
mance may not be good if there are many non-symmetric relations. 
Second, existing GNN searching methods [69] more focus on search-
ing connections between GNN layers and other GNN functions. 
Their message functions are also fxed, thereby incapable of han-
dling diferent KG data sets. And most of them usually ignore edge 
embeddings to represent relations, which cannot capture complex 
correlation between entities and relations. We summarized existing 
GNNs for KG embedding and GNN searching models in Tab. 1 in 
terms of allowed KG forms and message functions. 

In summary, the search space of KG searching methods is in-
fexible to handle diverse KG forms and is limited to tensor decom-
position models, while rigid message functions in existing GNN 
works are not conducive to handling diferent KG forms and data 
sets. Therefore, to improve the adaptability and performance of KG 
embedding models, we propose Message function SEArch for the 
given KG form (including KG, NRD and HKG) and data, named as 
MSeaKG. In this paper, we propose to build a fexible and expres-
sive search space based on the message function. More concretely, 
we frst propose a fexible space that allows diverse KG forms as 
inputs. Then, we identify the necessary computation operators that 
are domian-specifc designs for KG and search the structures that 
interact these operators in the message function. Not only various 
types of embedding models can be instantiated by message func-
tions with diferent structures and operators, but also the searched 
message function can capture the relational patterns in the given 
data. Besides, we also search other GNN components (e.g., aggre-
gation function) for pursuing more performance improvements. 
Finally, we formulate the discrete GNN models with probabilistic 
modelings to enable an efcient search algorithm working on our 
scenario. The main contributions are listed as: 
• MSeaKG proposes a novel search space for KG embedding models. 
As shown in Fig. 3 (a), the space allows diferent KG forms (in-
cluding KG/NRD/HKG) as inputs and covers multiple types of KG 
embedding models (including tensor/GNN/geometric models), 

while previous KG searching methods are specifcally designed 
for one KG form and only cover one type of embedding models. 

• The message function in existing GNN works is rigid, which is 
incapable of handling diferent KG forms and data sets. MSeaKG 
proposes a novel message function space, which enables the 
structures and operators of message functions being optimized 
for diferent KG forms (including KG/NRD/HKG) and data sets. 

• We compare MSeaKG with baselines on the link prediction and re-
lation prediction tasks. Experimental results show that MSeaKG 
can consistently achieve state-of-the-art performance on bench-
mark KGs, NRD, and HKGs by designing data-aware message 
functions, which verifes the improvements in adaptability and 
performance of the KG embedding model. 
Notations. We denote scalars by lowercase letters (� ), vectors by 

bold lowercase letters (� ), sets by uppercase letters (�), matrices by 
bold uppercase letters (�). Note that the superscript and subscript 
are utilized to identify notations instead of indexing elements, such 
as �� is �-th entity and e� is the vector representation of �-th entity. 

2 RELATED WORK 

2.1 Graph Neural Network Searching Methods 
To avoid manual eforts on neural architecture designs, Neural 
Architecure Search (NAS) [22, 62] aims to automatically search 
suitable neural architectures for the given data and task. Generally, 
search space, search algorithm, and evaluation measurement are 
three important components of NAS [12]. Search space defnes 
what network architectures in principle should be searched. The 
search algorithm performs an efcient search over the search space 
and fnds architectures that achieve good performance. Evaluation 
measurement decides how to evaluate the searched architectures 
during the search. Classical NAS methods are computationally 
consuming because candidate architectures are evaluated in a stand-
alone way, i.e., evaluating the performance of architecture after 
training it to convergence. To reduce the search cost, one-shot 
NAS [38] proposes weight sharing to share network weights across 
candidate architectures and evaluate them on the shared weights. 

Some pioneer works have explored NAS for GNNs [16, 24, 63, 
71]. And the one-shot NAS also has been introduced to search 
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Figure 1: The framework of several GNN-based works. The green box refers to the message function. 

GNN architectures recently [54, 56, 57, 70]. As shown in Fig. 1(a), 
most GNN searching methods follow the message passing neural 
networks (MPNNs) [17] to unify two steps in one GNN layer: 

����1 : �� ← ���({��� (�� , � � )}� � ∈� (�� ) ), (1) 
����2 : �� ← ��� (���� (�� , �� )), (2) 
∈ R� where �� represents the embedding of node �� , �� is the 

intermediate embeddings of �� gathered from its neighborhood 
� (�� ). The search space of operators are summarized into: 

• Message Function ��� (·): The message function decides the 
way to gather information from a neighborhood � � of the center 
node �� . The typical message functions in existing GNN searching 
methods are summarized as ��� (�� , � � ) = �� � �� � [69], where 
�� � denotes the attention scores between nodes �� with � � . 

• Aggregation Function ���(·): It controls the way to ag-
gregate message from nodes’ neighborhood. Usually ��� ∈ 
{���,���,����}, where ���(·) = 

Í 
� � ∈� (�� ) ��� (�� , � � ), 

��� (·) denotes channel-wise maximum, and ����(·) =Í 
� � ∈� (�� ) ��� (�� , � � )/|� (�) |. 

• Combination Function ���� (·): It determines the way to 
merge messages between node and its neighbors. ���� is usu-
ally selected from {������, ���,���}, where ������ (·) = [�� , m� ], 
��� (·) = e� + m� , and Multi-layer Perceptron ��� (·) = ��� (�� + 
�� ). 

• Activation Function ��� (·): [��������, �������, ���ℎ, ����, ���]
are some of the most commonly used activation functions [16]. 

Overall, above message functions are still fxed. No matter what 
the input data is, their structures and operators remain unchanged. 
Besides, most instantiations of ��� (·) (see Tab. 1) only learn node 
embeddings, which cannot encode relations (i.e., edge types). Note 
that NAS-GCN [24] takes the edge feature �� � between �� and � � as 
input without learning edge embeddings. 

2.2 Graph Neural Networks for KG Embedding 
KG embedding models [35, 39, 53, 66] have demonstrated their 
efectiveness in the past decades. Compared with classic models, it 
may be a better way to adopt diferent graphs to model several KG 
forms. For instance, tensor decomposition models [3, 28] represent 
a KG into a 3-order tensor and decompose tensors into � and � . 

But it is hard to extend them from the case of fxed arity (e.g., KG) 
to the of mixed arities where facts may have diferent � in the given 
data (e.g., {� (�1, �2), � (�1, �2, �3)}). That is because a tensor can only 
model a set of facts under the same arity [11]. 

As presented in Tab. 1 and Eq. 1, message functions in classic 
GNNs simply aggregate messages from adjacent nodes. But in sce-
narios of KGs, NRD and HKGs, it is important to know the type of 
edge (relation) that connects several nodes (entities). To capture 
relations, R-GCN [41] takes the binary fact � (�� , � � ) as inputs and 
proposes to model � ∈ � with W� ∈ R� ×� , which is instantiated as: 

�� = ��� (���({�� � � }� (�� ,� � ) ∈� (�� ) )), (3) 
where � (�� ) = {� (�� , � � ) ∈ � : � ∈ �, � � ∈ �} is the set of facts 
incident on �� . But such relation modeling may lead to the over-
parameterization issue because |� | could be large. Thus, CompGCN 
uses the vector � to represent � instead of matrix � [49]: 

�� = ��� (���({�� (� )� (� � , �)}� (�� ,� � ) ∈� (�� ) )), � = � � (4) 
where �(� ) records the directional information of edges. The entity-
relation composition operator set {���,����, ���� } is inspired by 
classical scoring function design in existing KG embedding models, 
such as element-wise subtraction ��� (·) = � � − � [7], inner product 
���� (·) = � � ∗ � [61], circular correlation ���� (·) = � � ◦ � [36]. 

Subsequently, G-MPNN [60] extends GNNs from KGs to NRD. It 
models NRD {� (�1, . . . , �� ) : 2 ≤ � ≤ � } under the mixed arity case 
as multi-relational hypergraph. The message function is formed as:Ö 
�� = ��� ( [�� , ���({��,� (� ) ∗ �� � ,� ∗ � � }� (�1,...,�� ) ∈� (�� ) )]), 

� ∈{1,...,� }
where � represents � (�1, . . . , �� ) ∈ � , � (�) : � → {1, . . . , �� } is a 
positional mapping (�� ≤ |� |), and �� � ,� is the positional embedding 
vector of � � on fact � to model the positional information. 

StarE [15] takes the hyper-relational fact � (�1, �2, {(�� � , � � )}) 
as inputs, where � (�1, �2) is the base triplet and �� � records the 
role information of entity � � that plays in this fact. Note that 
� (�1, �2, {(�� � , � � )}) is same as � (�1, . . . , �� ) if �� � is not available. 
StarE frst uses �� = ����({�� (�� � , � � )}) to aggregate informa-
tion from the role-value pairs, then uses a vector concatenate oper-
ator � (·) to form a hyper-relation based on � with �� as: 
�1 = ��� (���({�� (� )�� (�2, � (� , �� ))}� (�1,�2,{ (�� � ,� � ) } ) ∈� (�1� ) )), 

where the composition operator �� (·) performs on the hyper-
relation with base entity and the update of � in StarE is similar 
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Figure 2: The framework of MSeaHKG. Fig. (a) shows a layer of Fig. (b), including the search for message functions ��(·; � ) and 
other functions (e.g., ���(·), ���� (·), ��� (·)). The operator ��� enables the connectivity of diferent layers [24]. 

to CompGCN. Fig. 1 plots several message functions for diferent 
KG forms. 

3 MSEAKG 
In this section, we frst propose a search space that can fexibly 
take KG/NRD/HKG as input forms and is expressive to search dif-
ferent types of models. Then, we formulate the search problem and 
leverage an efcient algorithm to solve it. 

3.1 Search Space Design 
As discussed in Sec. 1, dynamicly designing the message function is 
more conducive to pursuing high empirical performance, because 
the searched message function can adapt to various KG forms and 
complex relational patterns in the given KG data. However, the 
space of existing GNN searching methods is neither data-aware nor 
applicable to various KG scenarios (see Eq. (1) and Fig. 1(a)). Thus, 
we focus on the search space design of message functions, which is 
important to KGs but is neglected by the current works. 

From Fig. 1, we can observe that those message functions are 
mainly diferent in these two aspects: 1) the operators (e.g., � , �,� ) 
for computing hidden representations, 2) the structure of message 
functions that decides how computational operators are connected. 
For the operator selection, existing works manually tune them 
on diferent data sets, such as � in CompGCN [49], �� , �� , � in 
StarE [15], ���(·) in G-MPNN [60]. Moreover, the structure of mes-
sage functions for NRD (Fig. 1(c)) and HKG (Fig. 1(d)) tends to be 
deeper and more complex than those for KGs (Fig. 1(b)). This is 
because the message function needs to process more entities/roles 
when facing the facts with higher arity (� is arity of � (�1, · · · , �� )). 
These observations motivate us to build spaces of operators and 
structures for message function search. 

Operator Space. We investigate more about the relationship 
between operators and relational patterns. Generally, the relational 
pattern [39] can be represented as a certain correlation among 
� (���� (�1, . . . , �� )), where ���� denotes the permutation. For 
example, � is symmetric if � (� � , �� ) must be true when � (�� , � � )
is true. �1 and �2 are inverse relations if �1 (�� , � � ) must be true 
when �2 (� � , �� ) is true. Therefore, the message function in the 
search space must be able to handle such correlation in the form of 

� (���� (�1, . . . , �� )). In the next, we introduce the space of opera-
tors and discuss how they deal with � (���� (�1, . . . , �� )). 

• Positional Transformation Matrix �� (� ) : The position of entity 
in a fact may determine the plausibility of the fact. For exam-
ple, isCaptialOf(Beijing,China) is true while isCaptialOf 
(China,Beijing) is false. G-MPNN [60] utilizes the positional 
embedding ��,� and ��,� (� ) to encode the position of entity � and 
relation � in diferent facts, which requires the model complexity 
� (� |� | ( |� | + � )). However, the training data set is very sparse 
in KGs. This may sufer from over-parameterization and make 
the training insufcient. Instead, we adopt the way to transform 
one entity � to � possible positions. Let the positional mapping 
be � (�) : � → {1, . . . , � }, then the positional matrix is able to 
transform � to the permutation position in ���� (·) by �� (� ) �, 
where �� (� ) consumes � (��2) (|� |, |� | ≫ � in practice). 

• Concatenate Operator � (·): It mainly determines the concatena-
tion way between embedding vectors. We set O� = {������,����, 
����} [15], where ���� is the weighted sum. In general, � (·)
can concatenate embeddings after the positional transform ma-
trix �� (� ) , i.e., encoding ���� (�1, . . . , �� ). 

• Role Embedding �� : It is utilized to model the semantic informa-
tion of entities [32]. For example, the roles in 2nd position of facts 
playInCharacter(Zachary,StarTrek,(character:Spock)) 
and playInAward(Zachary,StarTrek,(award:BC-BSFC)) are 
diferent though other entities are same. Thus, the model 
should be able to capture the role of candidate entities, e.g., 
entity BC-BSFC is unlikely to be the correlated with relation 
playInCharacer since BC-BSFC is semantically similar to award 
instead of character. Note that role embedding is an optional 
choice depending on whether the inputs have role information. 

• Composition Operator � (·): Following CompGCN [49], we uti-
lize composition operator � (·) to capture messages between the 
node and edge embeddings. Note that � actually encodes the 
interaction between � and ���� (�1, . . . , �� ). While CompGCN 
and StarE empirically selects the most proper � (·), we include it 
into the operator space to search � (·). We combine the settings of 
CompGCN and StarE as O� = {���,����, ����, ����� } (����� [43], 
see others in Sec 2.2). Besides, � not only occurs between base 
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(a) Taxonomy of KG embedding models. (b) RotatE [43]. (c) n-DistMult [61]. (d) HolE [36]. (e) n-CP [28]. 
Figure 3: Fig. (a) is motivated by [39], where arrows indicate that the target model can be specialized into the source method. 
Intuitively, the space of MSeaKG is based on GNNs (orange color), but it can cover tensor/neural network/geometric models and 
allow KG/NRD/HKG as inputs. Fig. (b)-(d): Several instantiation cases of MSeaHKG message function space. ◦ denotes circular 
correlation ���� (·) [36], ∗ denotes inner product ���� (·) [61], − denotes the substraction ��� (·) [7], ★ is from RotatE [44]. 

relation � with entities, but also captures the correlation between 
roles �� � with entities in HKGs. 

• Others: (1) The ��� (�) = � operation allows inputs to skip one 
layer in the message function; (2) Unlike �� (� ) , the transform 
matrix � processes the hidden representations. 

In summary, �� (� ) encodes the positional information, which 
transforms entity embeddings into corresponding positions. Then, 
the operator� (·) concatenates the entity embeddings after encoding 
positional information. �� (� ) and � (·) are employed to represent 
���� (·). The operator � (·) computes the interaction between � 
with �� to capture the correlation between � and ���� (·). 

Structure Space for Message Function Search. Among above 
components, we fx the role embedding and positional transform 
matrix �� (� ) in the message function (see Fig. 2(a)) at the initial 
layer. And we include others into the space of message function 
O = {� , �,�, ��� } for searching. As shown in Fig. 2(a), we denote 
the node �

�
� as �-th operator of O in �-th layer and ��

� be the hidden 

representation outputted by �
�
� . Then we have: 

{�� (�1 ) �1,· · ·, �� (�� ) ��,��3 ,· · ·,��� ,� } if � (�1, �2, {�� � , � � }� 
=3)� {�� 

0} ={
{�� (�1 ) �1,· · ·, �� (�� ) ��,� } if � (�1, · · · , �� )
( )

}|O | ��� = ��
� {�� � 

� ��� 
−1 

�=1 , � ∈ {1, . . . , � } and � ∈ {1, . . . , |O|}, (5) 
where �� ∈ {0, 1} controls the connection between �� with �� −1,

� � � � 

i.e., {�� } controls the structure of message functions (see Fig. 2 (c)). 
� � 

Compared with works in Sec. 2.2, it is more fexible to take any data 
form as inputs. In practice, to handle the facts with mixed arities, 
we use the maximum arity � as the maximum allowed inputs, 
i.e., |{�0}| = 2� − 1 for HKG or � + 1 for NRD. For those facts 

� 
� < � , we pad zero embeddings like {�� (�1 ) �1, �� (�2 ) �2, 0, 0, � }
when � = 2, � = 4. 

To avoid manual operation selection, we also search for concrete 
operations of two operators � and � . Given the operator set O� 

�� �� and O� , let �� , � ∈ {0, 1} records the selection �-th operation 
� 

�� ∈ O� , O� at �-layer respectively. Then, � and � perform the Í �� computation in Eq. (5) could be �� (�) = � �� (�) and �� (�) = 
� Í �� Í �� Í �� �

� �� (�). Note that � �� = 1 and � �� = 1. Let ��� = 
�� �� {�� }∪ {� }∪ {� }. The message function parameterized by ��� 

� � � � 
is defned as:( )

� (�1, . . . , �� ); ��� | O | 
�� = ���&������ ({��� }�=1 ), (6) 

Algorithm 1: MSeaKG 

Input: Facts {S��� , S��� } from KG/NRD/HKG G(�, �, �)
1: Initialize embedding � and GNN architecture parameter � ¯ 
2: while not converged do 
3: Sample a GNN architecture � as � ∼ � ̄  (� );

� 
4: Feed S��� into the sampled � to compute L(�, �; ����); 
5: Compute ∇

� ¯ � [L(·)] (Eq. 9) and ∇� � [L(·)] (Eq. 10) to 
¯update �, �; 

6: end while 
7: Sample 10 architectures {� � } and select the one 
� ∗ = arg min� � L(� � , �; ���� )

8: Retrain the derived � ∗ from scratch to obtain the fnal �∗ 
Output: Searched GNN architecture � ∗ with embedding �∗ 

where we discard �� for simplicity, and �� is outputted by the 
� 

last layer of Eq. 5. Intuitively, existing message functions for 
KG/NRD/HKG (Fig. 1) are contained in the MSeaKG space (Fig. 2(a)). 
Moreover, some classic KG embeddings can be instantiated as spe-
cial cases of our space (see Fig. 3), including geometric model Ro-
tatE [43] and tensor models n-DistMult [61], HolE [36], n-CP [28]. 

Overall GNN Space. Except for searching ��(·; ���), we also 
search for other operators (e.g., ���, ����, ��� ) like existing GNN 
searching methods (see Sec. 2.1) as shown in Fig. 2(a). For example, 
let O��� = {���,����,��� } be the set of candidate ���(·). Step 1 
of MPNN (Eq. (1)) can be built on the top of Eq. (6): 
�� = ���({��(� (�1, . . . , �� ); ���)}� (�1,...,�� ) ∈� (�� ) ; �

���)∑ 
��� 

= � 
� · � � ({��(� (�1, . . . , �� ); ���)}� (�1,...,�� ) ∈� (�� ) ). 

� � ∈O��� 

Then, step 2 of MPNN (Eq. (2)) for updating �� are similar to above 
equation. And the update of � follows the way of [15, 49]. 

Let � = {��� , ���� , . . . } be parameter set for all operators selec-
tion in our MPNN framework. Then, an architecture can be repre-
sented as �

� = {��(·; ���), ���(·; ����), · · · }. Existing GNNs for 
KG embedding actually can be represented by diferent �. Overall, 
a GNN model �

� encodes the given KG G into embedding space 
� = {� , �}, i.e., � = �

� (G). 

3.2 Search Algorithm Design 
In this subsection, we introduce how to select the GNN �

� that 
can achieve high performance on the given G. First, we need to 
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Table 2: The model comparison of LP task on the case of mixed arity. The results of Geometric, NNs and multi-linear baselines 
are copied from [32]. GNN baselines are re-implemented due to the task variance. S2S is copied from the original paper. 

Type Model MRR 
WikiPeople (HKG) 
Hit@1 Hit@3 Hit@10 MRR 

JF17K (NRD) 
Hit@1 Hit@3 Hit@10 

Geometric RAE [65] 0.253 0.118 0.343 0.463 0.396 0.312 0.433 0.561 

NNs 
NaLP [19] 
HINGE [40] 
NeuInfer [18] 

0.338 
0.333 
0.350 

0.272 0.364 
0.259 0.361 
0.282 0.381 

0.466 
0.477 
0.467 

0.310 
0.473 
0.451 

0.239 0.334 
0.397 0.490 
0.373 0.484 

0.450 
0.618 
0.604 

Multi-linear HypE [14] 
RAM [32] 

0.292 
0.380 

0.162 0.375 
0.279 0.445 

0.502 
0.539 

0.507 
0.539 

0.421 0.550 
0.463 0.573 

0.669 
0.690 

GNNs StarE [15] 
G-MPNN [60] 

0.378 
0.367 

0.265 0.452 
0.258 0.439 

0.542 
0.526 

0.542 
0.530 

0.454 0.580 
0.459 0.572 

0.685 
0.688 

Searching 
S2S [11] 
MSeaKG 

0.372 
0.392 

0.277 0.439 
0.290 0.468 

0.533 
0.553 

0.528 
0.561 

0.457 0.570 
0.475 0.591 

0.690 
0.705 

evaluate the performance of a given GNN �
�
. Generally, the scoring 

function � (� ; �) verifes the plausibility of fact � = � (�1, . . . , �� ). A 
good embedding � can make � (� ; �) to distinguish true or false for 
a given fact � . Since the GNN �

� encodes G(�, �, �) into embedding 
� as � = �

� (G), we build evaluation of �
� on � (�; �). Formally, 

the GNN search problem for a given HKG G is formulated as: 
min L(�

�
, �; G), (7) 

�,� 

where L(�
�
, �; G) = 

Í 
� ∈� ℓ (� (�; �)). We follow [10] to instanti-

ate ℓ (·) as cross entropy loss with label smoothing ratio. 
Solving Eq. 7 is a non-trivial task because �

� is from a large 
space. For example, just the structure space of {�� } reaches to 

� � 

� (2� | O |2+(2� +1) | O | ). And �
� is discrete, indicating the gradient-

based optimization cannot be employed since ∇�Θ L(·) does not 
exist. To enable an efcient search, we frst relax the parameters of 
GNN model � from a discrete space into a continuous and proba-
bilistic space � ¯ . More specifcally, �� ∈ {0, 1} restrictively controls 

� � 

the connectivity between �� with �� −1, while � ̄� ∈ [0, 1] is the 
� � � � 

probability that �� is connected with �� −1. Then, let � ∼ � ̄  (� )
� � � 

represent a GNN model � being sampled from the distribution 
� ̄  (� ). We reform the problem in Eq. 7 into: 
� 

min �� ∼�
� ¯ (� ) [L(�, �; G)], (8)

¯ 
�,� 

where � [·] is the expectation. Appx. A presents more details of 
Eq. 8’s optimization. The overall search procedure of MSeaKG has 
been summarized in Alg. 1. 

4 EXPERIMENTS 

4.1 Experimental Setup 
The experiments are implemented on top of PyTorch [37] and per-
formed on one single RTX 2080 Ti GPU. Appx. B.1.1 introduces the 
details of hyper-parameters. 

Data Sets. The details of data sets are summarized into Tab. 8 
in Appx. B.1.2. For experiments on facts with mixed arities (i.e., 
the arity � of facts in a data set may be diferent), we employ: 1) 
Wiki-People [19] is a HKG {� (�1, �2, {(�� � , � � )}� 

=3) :� ∈ {2, · · · , � }} 
� 

extracted from wiki-data; 2) JF17K [65] is the n-ary relational data 
{� (�1, · · · , �� ) : � ∈ {2, · · · , � }} extracted from Freebase [6]. Be-
cause Alg. 1 needs the validation data, we follow RAM [32] to split 
the training set of JF17K into training and validation sets, which 

difers from the original setting in [19, 40, 65]. For experiments 
on facts with fxed arities (i.e., the arities of facts in a data set 
are same), we utilize following data sets: 1) KGs: WN18RR [10], 
FB15k237 [46], and YAGO3-10 [10] (� = 2); 2) NRD: WikiPeople-3 
and JF17k-3 (� = 3), WikiPeople-4 and JF17k-4 (� = 4) [31]. Note 
that GETD [31] removes roles and flters out 3-ary and 4-ary facts 
from WikiPeople and JF17K to construct WikiPeople-� and JF17k-�. 

Tasks and Evaluation Metrics. We compare KG/NRD/HKG 
embedding models on the link and relation prediction task in the 
transductive setting. The link prediction (LP) task is to predict the 
missing entity in the given fact at � possible positions, e.g., pre-
dicting the 3rd missing entity � (�1, �2, (��3 , ?)) or � (�1, �2, ?). The 
relation classifcation (RC) task needs to predict the missing rela-
tion in a fact when all entities are known, i.e., ?(�1, · · · , �� ). We 
employ Mean Reciprocal Ranking (MRR) [51] and Hit@{1, 3, 10}
(see Appx. B.1.3). Higher MRR and Hit@k values mean better em-
bedding quality. 

Baselines. Although the space of MSeaKG is based on GNNs, 
MSeaKG could cover other types of embedding models. Thus, we 
include a set of non-GNN models into comparison. 

• Geometric: Classic TransE [7] and RotatE [43] are for KG. RAE 
[65] is an upgrade version of m-TransH [58]. 

• GNNs: We adopt R-GCN [41], CompGCN [49], G-MPNN [60] 
and StarE [15] (Sec. 2.2). Note that we re-implement and tune 
G-MPNN and StarE since their original tasks are diferent from 
ours. G-MPNN follows the inductive setting and StarE only tests 
the performance of main triplets in hyper-relational facts. 

• Other NNs: NaLP [19], HINGE [40], and NeuInfer [18]. 
• Multi-linear: The fnal score of HypE [14] and RAM [32] is 
computed by multi-way inner product which is extended from a 
bilinear model DistMult [61]. 

• Tensor decomposition: TuckER [3] is based on Tucker decom-
position [48]. Then, we follow GETD [31] to include the exten-
sions n-CP [28] and n-TuckER [3] since they perform well on the 
case of high arity. n-CP [28] leverages CP decomposition [21]. 

• Searching: Most of GNN searching models in Tab. 1 cannot be 
applied to KGs since they cannot model relations. We employ 
one recent GNN searching model AutoGEL [54] that can handle 
KG. But AutoGEL [54] simply extends ��� (·) to embed edge in 
KGs (see Tab. 1), thereby failing to handle more general cases 

2638



Message Function Search for Knowledge Graph Embedding WWW ’23, April 30–May 04, 2023, Austin, TX, USA 

Table 3: The model comparison of LP task on facts with fxed arity � = 2 (i.e., KGs). The results of TransE, RotatE, DistMult, and 
TuckER are copied from [39]. The reuslts of R-GCN is copied from [49]. Others are copied from original papers. 

Type Model FB15k237 WN18RR YAGO3-10 
MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 

Geometric 
TransE [7] 
RotatE [43] 

0.310 
0.336 

0.217 0.497 
0.238 0.531 

0.206 
0.475 

0.028 0.495 
0.426 0.574 

0.501 
0.498 

0.406 0.674 
0.405 0.671 

Bilinear 
Tensor Decomp. 

DistMult [61] 
TuckER [3] 

0.313 
0.352 

0.244 0.490 
0.259 0.536 

0.433 
0.459 

0.397 0.502 
0.430 0.514 

0.501 
0.544 

0.413 0.661 
0.466 0.681 

GNNs R-GCN [41] 
CompGCN [49] 

0.248 
0.355 

0.151 0.417 
0.264 0.535 

-
0.479 

- -
0.443 0.546 

-
-

- -
- -

Searching 
AutoGEL [54] 
MSeaKG 

0.357 
0.360 

0.266 0.538 
0.267 0.545 

0.479 
0.482 

0.444 0.549 
0.445 0.554 

-
0.580 

- -
0.505 0.708 

Table 4: The model comparison of LP task on facts with fxed arity � = 3, 4 (i.e., NRD). The results of tensor decomposition 
models are copied from [31], others are copied from [11]. 

Type Model WikiPeople-3 JF17K-3 WikiPeople-4 JF17K-4 
MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 

Geometric RAE [65] 0.239 0.379 0.505 0.644 0.150 0.273 0.707 0.835 

NNs 
NaLP [19] 
HINGE [40] 
NeuInfer [18] 

0.301 0.445 
0.338 0.508 
0.355 0.521 

0.515 0.679 
0.587 0.738 
0.622 0.770 

0.342 0.540 
0.352 0.557 
0.361 0.566 

0.719 0.805 
0.745 0.842 
0.765 0.871 

Tensor 
Decomp. 

n-CP [28] 
n-TuckER [3] 
GETD [31] 

0.330 0.496 
0.365 0.548 
0.373 0.558 

0.700 0.827 
0.727 0.852 
0.732 0.856 

0.265 0.445 
0.362 0.570 
0.386 0.596 

0.787 0.890 
0.804 0.902 
0.810 0.913 

Searching 
S2S [11] 
MSeaKG 

0.386 0.559 
0.403 0.579 

0.740 0.860 
0.754 0.889 

0.391 0.600 
0.409 0.624 

0.822 0.924 
0.833 0.938 

NRD and HKG. Besides, another searching method S2S [11] is 
also included, which cannot be extended to handle HKG. 

Note that we have included the references to baseline performance 
in the captions of Tab. 2, 3, and 4. And some baselines are not 
applicable to diferent KG forms, thus they cannot be consistently 
compared on all tables. 

Additional Experiments in Appendix. Due to the space limi-
tation, we include more experimental results in Appx. B.2 to provide 
more insights, including relation prediction in Appx. B.2.1, ablation 
study of the search algorithm in Appx. B.2.2, and sensitiveness anal-
ysis in Appx. B.2.3. Besides, Appx. B.3 presents searched message 
functions that are data-dependent and can adapt to the given data. 

4.2 Main Report for Efectiveness Comparison 
The link prediction results on WikiPeople and JF17K have been 
summarized into Tab. 2. And the relation prediction results are in 
Tab. 9. Compared with Geometric and NNs methods, GNNs methods 
achieve outstanding performance, which demonstrates the power 
of GNNs on the graph tasks. And StarE generally is better than 
G-MPNN in GNNs methods because the inner product way in G-
MPNN cannot handle several relational patterns as mentioned in 
Sec. 1. Besides, although the multi-linear method RAM utilizes the 
simple inner product as its scoring function, it carefully models the 
role semantic information and interaction patterns, thus achieving 
good performance. Overall, all existing methods cannot consistently 
achieve the leading performance on diferent tasks and data sets. 
In this paper, MSeaKG pursues the high model performance by 
dynamically designing the most suitable message function for the 
given data and task. The searched message functions can capture 

data-level properties (see Fig. 5), thereby showing the leading per-
formance. Especially, the search space of another search method S2S 
is based on the tensor modeling. Although S2S alleviates the exten-
sion issue of tensor modeling, its performance still slightly inferior. 
Following the graph modeling, MSeaKG benefts from building a 
message function search space in GNNs. 

We also show link prediction results on data sets with fxed arity 
in Tab. 3 (� = 2) and Tab. 4 (� = 3, 4). In Tab. 3, MSeaKG achieves 
comparable results on common KGs because the message functions 
do not need to be too complex to model facts with low arity. For 
experiments on high arity in Tab. 4, we frst observe that classic 
tensor decomposition models (n-CP, n-TuckER, GETD) perform 
better than Geometric and NN-based methods. Then, S2S proposes 
to dynamically sparsify the core tensor of tensor decomposition 
models for the given data and further improve the performance of 
tensor decomposition models. MSeaHKG still signifcantly improves 
the performance of S2S even in the scenario of fxed arity. That 
is because S2S simply assumes 3 relationships between entities 
and relations in the search space: positive, irrelevant, and negative. 
But the message function space in Sec. 3.1 could characterize more 
complex interactions between entities and relations. 
4.3 Ablation Study 
Except for the main experimental results, here we report the per-
formance of several variants of MSeaKG (see Tab. 5) to investigate 
some key designs in this paper, including MSeaKG�� , MSeaKG�� , 
MSeaKG�� for the search space, MSeaKG����� and MSeaKG�� for 
the search algorithm. Due to the space limitation, Appx. B.2.2 
presents the experimental settings of MSeaKG����� and MSeaKG�� 
with an analysis of efectiveness and efciency. 
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Table 5: The comparison of variants of MSeaKG in the link prediction task on the case of mixed arity. 

Type Model MRR 
WikiPeople (HKG) 
Hit@1 Hit@3 Hit@10 MRR 

JF17K (NRD) 
Hit@1 Hit@3 Hit@10 

GNNs StarE 
G-MPNN 

0.378 
0.367 

0.265 0.452 
0.258 0.439 

0.542 
0.526 

0.542 
0.530 

0.454 0.580 
0.459 0.572 

0.685 
0.688 

Search 
S2S 
MSeaKG 

0.372 
0.392 

0.277 0.439 
0.291 0.468 

0.533 
0.553 

0.528 
0.561 

0.457 0.570 
0.475 0.591 

0.690 
0.705 

Variants of 
space 

MSeaKG�� 

MSeaKG�� 

MSeaKG�� 

0.354 
0.385 
0.391 

0.233 0.431 
0.274 0.460 
0.278 0.465 

0.520 
0.548 
0.552 

0.512 
0.554 
0.559 

0.445 0.553 
0.468 0.579 
0.475 0.585 

0.671 
0.699 
0.702 

Variants of 
algorithm 

MSeaKG����� 
MSeaKG�� 

0.373 
0.380 

0.275 0.445 
0.281 0.457 

0.535 
0.542 

0.554 
0.558 

0.460 0.588 
0.472 0.590 

0.697 
0.701 

Search Space. We frst present the confguration of variants: 

• MSeaKG�� basically enables current GNN searching meth-
ods working on HKGs. Inspired by R-GCN (see Eq. 3), we 
frst replace the transform matrix � in ��� (·) (see Eq. 1) 
to �� . Then, we concatenate the entity embeddings as � = 
������ (�1, . . . , ��, 0, . . . , 0). Note that the number of zero em-
beddings 0 is equal to � − �. We utilize the message function 
��� (� (�1, . . . , �� )) = �� � to replace Eq. 6. Other steps are same 
with original version. 

• MSeaKG�� only searches operations of operators � and � in 
�� �� ��(·; � ) (i.e., � = {� } ∪ {� }), while keeping the structure of 
� �

StarE’s message functions. Other steps are same with original 
version. 

• MSeaKG�� only searches structures of the proposed message 
function ��(·; � ), and sets �,� to ����,���� respectively (i.e., 
� = {�� }). The fxed operations are selected based on better em-

� � 
pirical performance. Other steps are same with original version. 

From Tab. 5, we observe that the simple extension version 
MSeaKG�� even cannot achieve as good performance as existing 
GNNs (e.g., StarE and G-MPNN). This verifes the claim that the sim-
ple message function in the existing GNN searching method (e.g., 
AutoGEL [54] discussed in Sec. 2.2) may not be able to handle the 
complex correlations between relations and entities on HKGs (see 
Tab. 3 for more comparison on KGs). Moreover, MSeaKG�� keeps 
the same message function structure with StarE but searches suit-
able operations. Difer from manually tuning operations in StarE, 
the automatic way is more powerful so that MSeaKG�� achieves 
a minor improvement compared with StarE. As for MSeaKG�� , it 
can search for more fexible structures of message functions for the 
given data and achieve the best performance among several vari-
ants. It can illustrate that the message function design is important 
to KG embedding. However, MSeaHKG�� is still slightly inferior 
compared with the original version of MSeaKG. This shows that 
the best structure and operations are dependent. Simply fxing op-
erations to search the structure may lead to the sub-optimal results. 

Scoring Functions. There are many scoring functions that can 
be utilized to decode embeddings into score, such as DistMult [61] 
and Transformer [50]. In principle, MSeaKG can implement most 
existing scoring functions as its decoder. In this paper, we simply 
concatenate the embeddings of known entities and relations in 
a fact and feed it into a two-layer MLP. That is mainly because 
the message function space has the strong capability to capture 

Table 6: The model comparison of variants of MSeaKG in 
terms of adopted scoring functions. 

Scoring 
Function 

MRR Perfo
WikiPeople 

rmance 
JF17K 

Searching Ti
WikiPeople 

me (in hours) 
JF17K 

MLP 0.392 0.561 30.9 7.7 
DistMult 0.377 0.522 28.1 7.1 
Transformer 0.381 0.548 92.8 18.5 

the interactions between entities and relations. And some classic 
scoring functions are covered by MSeaKG (see Fig. 3). 

As shown in Tab. 6, we investigate the infuence of scoring func-
tions on the searching efectiveness and efciency. We can observe 
that the MLP version achieves best efectiveness and comparable 
efciency. During search, MSeaKG samples diferent architectures, 
uses the sampled architecture to learn embeddings, then forward 
embeddings to scoring functions for calculating fnal scores. It is 
intuitive that the transformer version consumes more time than 
the versions of MLP and DistMult. Hence, the transformer version 
is hard to achieve the feedback of sampled architectures, which 
lead to insufcient training compared with the MLP version. As for 
the DistMult version, its capability is inferior since it cannot cover 
some relational patterns. Thus, we use a simple scoring function 
for the sake of efectiveness and efciency. 
5 CONCLUSION 
In this paper, we propose a new searching method for KG embed-
ding, named MSeaKG. First, we present a novel search space of 
message functions, which allows KG/NRD/HKG forms as inputs. 
By enabling the structure search and operation selection, some 
classic KG embedding models and existing message functions for 
KG/NRD/HKG could be instantiated as special cases of our space. 
Then, we leverage an efcient algorithm to search the message 
function and other GNN components for the given data. Experi-
mental results show that MSeaKG can consistently achieve leading 
performance on benchmark KGs, NRD, and HKGs by designing 
data-aware message functions. 

One limitation of MSeaKG is not covering the path-based 
GNNs [72], which aggregate messages from paths instead of neigh-
bors. This is a worthwhile direction to try, although in the case of 
NRD and HKG, the path concept in graph is more complex. More-
over, MSeaKG tends to ft those relations with a large proportion of 
KGs for high performance, while ignoring those rare relations. Thus, 
another future direction is expected to search multiple message 
functions to alleviate this issue. 
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A FULL DERIVATION INVOLVED IN SEC. 3.2 
To compute the gradient w.r.t. � ¯ , we frst utilize the reparameteri-
zation trick � = � ̄  (� ) [59], where � is sampled from a uniform 

� 
distribution � (� ). Then the gradient w.r.t. � ¯ and � is computed as: 
∇
� ¯ �� ∼�

� ¯ (� ) [L(�, �; G)] = ∇
� ¯ �� ∼� (� ) [L(� ̄  (� ), �; G)] (9)∫ ∫ � 

= ∇ ̄  � (� )L(� ̄  (� ), �; G)�� = � (� )∇ ̄  L(� ̄  (� ), �; G)�� 
� � � � 

= �� ∼� (� ) [∇ ̄  L(� ̄  (� ), �; G)] = �� ∼� (� ) [L ′ (� ̄  (� ), �; G)∇
� ¯ � ̄  

� � � � ∫ 
∇� �� ∼�

� ¯ (� ) [L(�, �; G)] = ∇� �
� ¯ (� )L(�, �; G)�� ∫ 

= �
� ¯ (� )∇� L(�, �; G)�� = �� ∼�

� ¯ (� ) [∇� L(�, �; G)] . 
(10) 

Table 7: List of hyper-parameters in main experiments. 

learning rate 
MPNN layers 
� 
batch size 
dim. � 
dropout ratio 
label smooth. � 

LP RP 
WP 
0.0001 

2 
4 
256 
256 
0.15 
0.3 

JK 
0.001 
2 
4 
128 
256 
0.2 
0.8 

W-3 
0.0001 

1 
3 
128 
128 
0.1 
0.7 

J-3 
0.001 
1 
2 
128 
128 
0.1 
0.5 

W-4 
0.0001 

1 
2 
256 
256 
0.05 
0.8 

J-4 
0.0001 

1 
3 
128 
128 
0.15 
0.7 

WP 
0.0001 

2 
4 
256 
128 
0.2 
0.1 

JK 
0.001 
2 
4 
128 
128 
0.15 
0.1 

Table 8: The statistical summary on data sets. 
data setrole# all / � > 2 facts � # ent # rel train valid test 

JK 
WP 

×√ 100,947 / 46,320 
382,229 / 44,315 

2/6 
2/9 

28,645 
47,765 

322 
707 

61,104 
305,725 

15,275
38,223

24,568 
38,281 

W-18 
F-237 
YG-3 
J-3 
J-4 
W-3 
W-4 

× 
× 
× 
× 
× 
× 
× 

93,003 / 0 
310,116 / 0 
1,089,040 / 0 
34,544 / 34,544 
9,509 / 9,509 
25,820 / 25,820 
15,188 / 15,188 

2/2 
2/2 
2/2
3/3 
4/4 
3/3 
4/4 

40,943 
14,541 
123,188 
11,541 
6,536 
12,270 
9,528 

11 
237 
37 
104 
23 
66 
50 

86,835 
272,115 
1,079,040 
27,635 
7,607 
20,656 
12,150 

3,034 
17,535
5,000 
3,454 
951 
2,582 
1,519 

3,134 
20,466 
5,000 
3,455 
951 
2,582 
1,519 

1 2 3 4 5 6 7 8 910 15 20
# Sampled architectures in step 7 of Alg. 1

0.32

0.34

0.36

0.38

0.40

M
RR

Final Tst MRR

1 2 3 4 5 6 7 8 910 15 20
# Sampled architectures in step 7 of Alg. 1

0.50
0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58

M
RR

Final Tst MRR

(a) WikiPeople. (b) JF17K. 

Figure 4: Testing MRR v.s. the number of sampled architec-
tures in step 7 of Alg. 1. 

Note that ∇
� ¯ �� ¯ (� ) can be computed if �

� ¯ (� ) is diferentiable. we 
build the reparameterization trick � = � ̄  (� ) based on Gumbel-

� 
Softmax [23] or Concrete distribution [34]. For clarity, we simplify 
¯ 
� to the parameter � ̄ for a specifc operator space O: 

exp((log � ̄ � − log(− log(�� )))/���)
�� = � ̄  (� ) = Í ,� 

′ ∈O exp((log � ̄ � ′ − log(− log(�� ′ )))/���)
(11) 

where ��� is the temperature of softmax, and �� ∼ � �� � ���(0, 1). 
¯ ¯ 

� 

It has been proven that � (lim���→0 �� = 1) = �� / 
Í 

�� ′ mak-� ′ ∈O 
ing the stochastic diferentiable relaxation unbiased once converged 
[59]. And the details of ∇ ̄  � ̄  (� ) can refer to [59]. 

� � 

B MORE EXPERIMENTS 

B.1 Experimental Setup 
B.1.1 Hyper-parameter Setings and Related Discussion. We have 

(� )],summarized the hyper-parameters of this paper in Tab. 7. The 
hyper-parameter set includes Adam optimizer [26], learning rate 
∈ {0.1, 0.01, 0.001, 0.0001, 0.00001}, # MPNN layers ∈ {1, 2, 3, 4} (see 
left part of Fig. 2), # layers in message functions � ∈ {1, 2, 3, 4, 5}
(see right part of Fig. 2), batch size ∈ {64, 128, 256, 512}, embedding 
dimension � ∈ {64, 128, 256, 512}, dropout ratio ∈ {0, 0.05, 0.1, 0.15, 
. . . , 0.5}, label smoothing ratio � ∈ {0, 0.1, 0.2, . . . , 0.9}. Note that 
the label smoothing ratio � is employed to relax the one-hot label 
vector �. In practical, we set �� = 1 − � for the ground truth en-
tity/relation, while �� = �/|� |−1 for link prediction and �� = �/|� |−1 

for relation prediction. That is because there are usually a large can-
didate space for relations and entities, while Using one-hot vector is 
quite restrictive. The hyper-parameters of MSeaKG/G-MPNN/StarE 
are tuned with the help of optuna.samplers.TPESampler [4, 13]1. 

1https://optuna.readthedocs.io/en/stable/reference/samplers/index.html 

2642

https://optuna.readthedocs.io/en/stable/reference/samplers/index.html


Message Function Search for Knowledge Graph Embedding WWW ’23, April 30–May 04, 2023, Austin, TX, USA 

Table 9: The model comparison of the relation prediction task on the arity of mixed case. The results of NNs are copied from 
[18], others are based on our implementations. 

Type Model MRR 
WikiPeople (HKG) 
Hit@1 Hit@3 Hit@10 MRR 

JF17K (NRD) 
Hit@1 Hit@3 Hit@10 

NNs NaLP [19] 
NeuInfer [18] 

0.735 
0.765 

0.595 -
0.686 -

-
-

0.825 
0.861 

0.762 -
0.832 -

-
-

GNNs StarE [15] 
G-MPNN [60] 

0.800 
0.777 

0.753 0.936 
0.694 0.905 

0.951 
0.912 

0.901 
0.864 

0.884 0.929 
0.842 0.883 

0.963 
0.917 

Searching 
S2S [11] 
MSeaKG 

0.813 
0.828 

0.744 0.928 
0.784 0.951 

0.960 
0.970 

0.912 
0.932 

0.877 0.932 
0.893 0.948 

0.951 
0.971 

B.1.2 Data Statistics. As shown in Tab. 8, we present the statistic 
summary of the benchmark data sets adopted in this paper. 

B.1.3 Evaluation Measurement. As in [7, 55], we report perfor-
mance under the “fltered” setting, i.e., evaluating the rank of test 
fact after removing all corrupted facts that exist in the train, valid, 
and test data set. That is because true facts in data set should be 
not considered as faults when evaluating a test fact. Let rank�,� 
denote the rank of ground truth entity at position � of �-th fact 
� = (�, �1, . . . , �� ) (see more discussions about policy in [5, 39, 45]): 

rank+ = |{� ′ ∈ � \{�� } : � (� ′ ; �) > � (�; �) ∩ � ′ ∉ �}| + 1,�,� 

rank− = |{� ′ ∈ � \{�� } : � (� ′ ; �) ≥ � (�; �) ∩ � ′ ∉ �}|,�,� 

where � ′ = (�, �1, . . . , ��−1, � ′ = 2 (rank
+ 

rank− ) [5]. Then we adopt the classical metrics [7, 55]: 
, . . . , �� ) and rank�,� 

1 
�,� + 

�,� Í |� | Í� • Mean Reciprocal Ranking (MRR): 1/� |� | �=1 1/rank�,� ;�=1 Í |� |• Hit@1, Hit@3, and Hit@10, where Hit@k is given by 1/|� | 
�=1Í 

�
� 
=1 I(rank�,� ≤�) and I(·) is the indicator function. 

B.2 More Experimental Results 
B.2.1 Relation Prediction. Due to the space limit, we put the results 
of the relation prediction here. Tab. 9 reports the model performance 
of the relation prediction task on the mixed case of KGs (HKG 
and NRD), which also demonstrates the efectiveness of MSeaKG 
compared with baselines. 

B.2.2 Ablation Study of Search Algorithm. In this paper, we adopt 
one-shot NAS search algorithms due to the searching efciency (see 
more discussion in Sec. 2.1). Existing one-shot NAS algorithms can 
be roughly categorized into: stochastic diferentiable method (e.g., 
SNAS [59]), deterministic diferentiable method (e.g., DARTS [30]), 
and policy gradient-based method (e.g., ENAS [38], ASNG [1]). Here, 
we implement two more variants, MSeaKG����� based on DARTS 
and MSeaKG�� based on ASNG, to investigate the performance of 
other NAS search algorithms in our application scenario. 
• MSeaKG����� follows DARTS to directly relax � to learnable 
parameters. Then, the computation in DAG (see Eq. 5) will be re-( )Í | O |

=1 �
� �� −1 , �� = �� Í|O| formed to: ��

� = 
� � � ·��

� 
� � � � �/ � ′ =1 

�
� � 
� 
′ . Then, we 

can minimize the loss L(�, �; G) through the gradient ∇
�
L(·). 

• MSeaKG�� follows the policy gradient-based NAS 
search algorithm to derive: ∇ ̄  �� ∼�

� ¯ (� ) [L(�, �; G)] = 
� 

∇
� ¯ �� ∼� ̄  (� ) [L(�, �; G)∇� ¯ log � ̄  (� )]. We utilize ASNG [1],

� � 
which implements the fsher information matrix in ∇

� ¯ log �
� ¯ (� )

for fast convergence. 

Figure 5: The searched message functions by MSeaKG. 

We here analyze the model comparison between original 
MSeaKG with its variants MSeaKG�� and MSeaKG����� . From Tab. 5 
and Tab. 10, we observe that MSeaKG and MSeaKG�� have better 
performance than MSeaKG����� in both efectiveness and efciency 
comparisons. First, DARTS aims to train a supernet by mixing all 
candidate operations during the searching phase, then it will derive 
a discrete architecture after fnishing the search. But the weights 
[� � ] cannot cannot converge to a one-hot vector, which lead to 
�

performance collapse after removing |O − 1| operations in O [9, 64]. 
Second, it will consume more computational resources when main-
taining all operations during the search. Instead, MSeaKG and 
MSeaKG�� train discrete architectures in searching (the bounded 
discreteness of MSeaKG is discussed in Appx. A), which avoids 
performance collapse and large computational overhead. As for the 
comparison between MSeaKG with MSeaKG�� , MSeaKG achieves 
slight improvements. That is mainly because MSeaKG directly cal-
culates the gradient w.r.t. � ¯ from the loss L(·), while MSeaKG�� 
takes the loss L(·) as a reward to feed it to a reinforcement learning 
controller. 

B.2.3 Sensitive analysis on the number of sampled architectures. 
Before deriving the fnal architecture, MSeaKG samples several 
architectures (step 7 in Alg. 1) since the stochastic algorithm may 
output diferent models. We investigate the infuence of the diferent 
numbers of sampled architectures. As shown in Fig. 4, the model 
performance may not be good enough if the number of samples is 
too less, But overall, MSeaKG is not sensitive to this parameter. 

B.3 Data-aware Model for Relational Patterns 
As shown in Fig. 5, we demonstrate several message functions 
searched by MSeaKG on WN18RR, FB15k237 and JF17K-3. We can 
observe that the message functions are data-dependent, which can 
capture the relational patterns in diferent data sets. For example, 
the message function searched on WN18RR is the exact RotatE 
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Table 10: The training time comparison (in hours) of GNN-based models in the link prediction task on HKGs. 

Type Model Mixed Arity Arity=3 Arity=4 
WikiPeople JF17K W-3 J-3 W-4 J-4 

Search MSeaKG 30.9 ± 4.7 7.7 ± 1.8 1.8 ± 0.4 1.4 ± 0.2 0.9 ± 0.1 1.1 ± 0.2 
Variants of MSeaKG����� 40.2 ± 2.5 11.5 ± 2.2 2.5 ± 0.5 2.1 ± 0.3 1.5 ± 0.2 1.3 ± 0.1 
algorithm MSeaKG�� 35.1 ± 3.0 10.3 ± 1.7 2.3 ± 0.3 1.5 ± 0.2 1.4 ± 0.2 1.1 ± 0.1 

Table 11: The MRR performance of models tested on relation-
level of DDB14 [52]. 

Symmetry Asymmetry Overall relation name may be allelic with belong(s) to may cause 
ratio in S��� 0.7% 20.4% 61.9% 100.0% 
TransE 0.00 0.19 0.20 0.18 
DistMult 0.19 0.21 0.25 0.20 
MSeaKG 0.08 0.25 0.30 0.26 

model [43], which has been proven to cover symmetric relations 
(37% in WN18RR). 

One motivation behind this paper is to pursue a message function 
that can adapt to the relational patterns in the given KG/NRD/HKG. 
To verify it, we conduct experiments on a medical KG DDB14 [52]. 
It contains the terminologies such as drugs, symptoms, diseases 
and their relationships. As shown in Tab. 11, MSeaKG focuses on 
those relations with high ratio (e.g., may cause) in the given KG to 
pursue the high performance. It will adapt to those relations that 
are mostly present in the data. In other words, the message function 
optimized by MSeaKG is very fexible to handle relation patterns 
since the optimized one can consistently evolve for the given data. 
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