
Searching to Sparsify Tensor Decomposition for
N-ary Relational Data

Shimin DI

The Hong Kong University of Science

and Technology

Hong Kong SAR, China

sdiaa@cse.ust.hk

Quanming YAO

4Paradigm Inc.

Tsinghua University

Beijing, China

yaoquanming@4paradigm.com

Lei CHEN

The Hong Kong University of Science

and Technology

Hong Kong SAR, China

leichen@cse.ust.hk

ABSTRACT
Tensor, an extension of the vector and matrix to the multi-

dimensional case, is a natural way to describe the N-ary relational

data. Recently, tensor decomposition methods have been intro-

duced into N-ary relational data and become state-of-the-art on

embedding learning. However, the performance of existing tensor

decomposition methods is not as good as desired. First, they suffer

from the data-sparsity issue since they can only learn from the

N-ary relational data with a specific arity, i.e., parts of common N-

ary relational data. Besides, they are neither effective nor efficient

enough to be trained due to the over-parameterization problem.

In this paper, we propose a novel method, i.e., S2S, for effectively

and efficiently learning from the N-ary relational data. Specifically,

we propose a new tensor decomposition framework, which allows

embedding sharing to learn from facts with mixed arity. Since

the core tensors may still suffer from the over-parameterization,

we propose to reduce parameters by sparsifying the core tensors

while retaining their expressive power using neural architecture

search (NAS) techniques, which can search for data-dependent

architectures. As a result, the proposed S2S not only guarantees to

be expressive but also efficiently learns from mixed arity. Finally,

empirical results have demonstrated that S2S is efficient to train

and achieves state-of-the-art performance.

KEYWORDS
Knowledge Graph, N-ary Relational Data, Tensor Decomposition,

Neural Architecture Search

ACM Reference Format:
Shimin DI, Quanming YAO, and Lei CHEN . 2021. Searching to Sparsify

Tensor Decomposition for N-ary Relational Data. In Proceedings of the Web
Conference 2021 (WWW ’21), April 19–23, 2021, Ljubljana, Slovenia. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3442381.3449853

1 INTRODUCTION
As an important way to explore and organize human knowledge,

web-scale knowledge bases (KBs, i.e., N-ary relational data) [2, 6, 31]

has promoted a series of web applications, e.g., semantic search [41],

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8312-7/21/04.

https://doi.org/10.1145/3442381.3449853

question answering [27], and recommendation system [9, 47].

Generally, the N-ary relational data contains n-ary facts, that is

formed by n entities with a relation r such as (r , e1, · · · , en) (i.e.,
arity is n). For example, playedCharacterIn is one of common 3-

ary relations, involved with an actor, a character, and a movie in

a 3-ary fact (playedCharacterIn, LeonardNimoy, Spock, StarTrek 1).
Given a fact, the link prediction task is one of the crucial tasks

in the N-ary relational data, which is to verify whether a fact is

plausible or not. Previous studies [8, 10, 19, 44, 50] focus on handling

the link prediction task on a special case of the N-ary relational

data, knowledge graphs (KGs, i.e., binary relational data) [28, 36].

Recently, how to handle the general N-ary relational data has

attracted lots of attention [13–15, 30, 39, 48]. Firstly, it is essential to

handle hyper-relational facts (i.e., n-ary facts with n > 2) because
they are very common in KBs. It has been reported in [39] that

more than 30% of the entities in Freebase [6] involves in the hyper-

relational facts. Moreover, the facts with high-arity may provide

benefits in the question answering scenario [12] since it usually

contains more complete information compared with binary facts.

Many models have been proposed to tackle the link prediction

task on the N-ary relational data. The translational distance

models m-TransH [39] and RAE [48] extend a well-known method

TransH [38] from binary to the n-ary scenario. But TransH cannot

handle certain relations [19, 32]. Thus, it is regarded as inexpressive

since a fully expressive model should be able to handle arbitrary

relation patterns on the binary case [19]. Consequently, m-TransH

and RAE are also not expressive. However, the expressive ability

largely determines the performance of embedding models. Thus,

the expressiveness of translational distance models worsens their

performance in the case of N-ary relational data. Furthermore, the

neural network models, NaLP [15], HINGE [30], and NeuInfer [14],

achieve good performance by employing complex neural networks

to learn embeddings. But they all introduce an enormous amount

of parameters, which contradicts the linear time and space

requirement in knowledge bases [7].

Tensor decomposition models [3, 25] introduce a natural way

to model N-ary relational data with a (n + 1)-order tensor and
become state-of-the-art because of their expressiveness. TuckER [3]

proposes to model the binary relational data with a 3-order tensor

and then decomposes it for embedding learning. It is easy to extend

TuckER from binary to high-arity relational data by modeling n-ary

facts with a high-order tensor, named n-TuckER [3, 25]. However,

such a simple extension will lead to the curse of dimensionality due

to the large size of the core tensor. Therefore, GETD [25] simplifies

the core tensor with Tensor Ring Decomposition [51] to reduce the

model complexity. Then, GETD achieves outstanding performance

https://doi.org/10.1145/3442381.3449853
https://doi.org/10.1145/3442381.3449853

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Shimin DI, Quanming YAO, and Lei CHEN

Table 1: Summary of existing n-ary works. Whether a scoring function is expressive depends on its capability of handling
common relation patterns as in [50]. The Mixed-arity indicates whether a model jointly learn from the N-ary relational data
with mixed arity. N is the maximum arity of facts. ne and nr are the number of entities and relations, respectively. de and
dr denote the dimensionality of embeddings on entity and relation, respectively. And dmax = maxi di with

∏c
i=1 di = dne dr in

GETD [25]. The time is the computational cost of calculating the score of the single n-ary fact based on d = de = dr .

Type Models Effectiveness Efficiency

Expressive Mixed-arity Time Space

Translational Models m-TransH [39] × ✓ O(d) O(nede + nrdr)

RAE [48] × ✓ O(d2) O(nede + nrdr)

Neural Network Models NaLP [15] unknown ✓ O(d2) O(nede + Nnrdr)

HINGE [30] unknown ✓ O(d2) O(nede + Nnrdr)

NeuInfer [14] unknown ✓ O(d2) O(nede + Nnrd)

Tensor Decomposition n-TuckER [25] ✓ × O(dn+1) O(nede + nrdr + d
n
e dr)

Models GETD [25] ✓ × O(d3) O(nede + nrdr + cd
3
max)

S2S ✓ ✓ O(d) O(nede + nrdr)

in the N-ary relational data because of less model complexity and

expressive guarantee [25].

However, existing tensor decomposition models for N-ary

relational data still suffer from two issues: data sparsity and over-
parameterization. First, it is well-known that the N-ary relational

data is very sparse, which is difficult for training and learning [29].

But existing tensor decomposition models [3, 25] can only learn

embeddings from facts with a specific arity n, while the N-ary

relational data usually contains facts with different arities [30, 39].

In other words, tensor decomposition models cannot leverage all

known facts of the given N-ary relational data, which causes the

data sparsity issue to become even more severe. Second, current

tensor decomposition models achieve the expressive capability

by maintaining an over-parameterized core tensor, even GTED

requires cubic model complexity. Such over-parameterization for

expressiveness not only makes the model inefficient but also

difficult to train. We summarize the above existing models for

N-ary relational data in Table 1. We first compare the two main

factors that affect the effectiveness of current models, the expressive

capability, and whether the model can learn from facts with mixed

arity. Then, to demonstrate whether the model requires a large

number of parameters, we compare their efficiency from the infer

time and size of parameter space. Obviously, none of the existing

works can cover all the aspects.

This paper aims to alleviate the data sparsity and over-

parameterization issues of existing tensor decomposition models

for n-ary relation data learning. To handle the data sparsity issue,

we propose to partially share embeddings across arities and jointly

learn embeddings from the N-ary relational data with mixed arity.

Then, motivated by the structurally sparse patterns discovered from

existing tensor models on binary relational data and the success of

neural architecture search (NAS) [18, 45] on designing data-specific

deep networks, we search to sparsify the dense core tensors using

NAS techniques to avoid over-parameterization. In this way, we

address the issues of data sparsity and over-parameterization while

retaining the expressiveness of tensor models.

We summarize the important notations in Table 2, and our

contributions are listed as follows:

• We propose a new model, i.e., S2S, to learn from N-ary relational

data, which simultaneously addresses the data-sparsity and over-

parameterization issue faced by existing tensor decomposition

models.

• To capture the data-specific knowledge, we propose a novel

approach to search for multiple sparse core tensors, which are

utilized to jointly learn from any given N-ary relational data with

mixed arity.

• We test the proposed model on the link prediction task in both

binary and N-ary relational data. Experimental results show that

S2S not only achieves outstanding performance in embedding

learning but also improves efficiency.

2 RELATEDWORKS
Recently, many tensor decomposition approaches have been

introduced to describe the N-ary relational data [3, 19, 24, 25, 34, 44].

Specifically, given facts with a specific arity n, a (n + 1)-order
tensor X ∈ {0, 1}nr×ne×···×ne is utilzed to represent a N-ary

relational data, where Xir ,i1, ...,in = 1 represents an existing fact

(rir , ei1 , · · · , ein) otherwise Xir ,i1, ...,in = 0. For instance, binary
relational data (i.e., n = 2) is represented into 3-order tensor

X ∈ {0, 1}nr×ne×ne . Then, different tensor decomposition models

differ in how the tensorX is decomposed into the entity embedding

E ∈ Rne×d , and relation embedding R ∈ Rnr×d .
Generally, there are two main tensor decomposition techniques

that have been introduced to embed n-ary relational data, i.e.,

CANDECOMP/PARAFAC (CP) decomposition [17] and Tucker

decomposition [35]. CP decomposes X as R ◦ E ◦ · · · ◦ E, and
the scoring function measures the plausibility of a n-ary fact

Searching to Sparsify Tensor Decomposition for
N-ary Relational Data WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

["!!]"
�

�

�
["!!]#

["!!]$!

[$!"]" [$!"]$#
[$! $
] "

[$! $
] $ #

(a) TuckER.

["!!]"
�

�

�
["!!]#

["!!]$!

[$!"]" [$!"]$#
[$! $
] "

[$! $
] $ #

1

1

1

1

1
1

1

1

1

1

(b) DistMult.

["!!]"
�

�

�
["!!]#

["!!]$!

[$!"]" [$!"]$#
[$! $
] "

[$! $
] $ #

1

1

1

1

1

1

1

1

1

1

-1
-1

-1

-1

-1
1

1

1

1

1

(c) ComplEx.

["!!]"
�

�

�
["!!]#

["!!]$!

[$!"]" [$!"]$#
[$! $
] "

[$! $
] $ #

!
"

!
"

!
"

!
"

!
"

!
"

!
"

!
"

!
"

!
"

(d) SimplE.

Figure 1: (a) Each element in TuckER core tensor interprets the correlation between entities and relations of every embedding
dimension; (b), (c) and (d) illustrate DistMult, ComplEx and SimplE under representations of TuckER core tensor, respectively.
Note that elements that are set to 0 are represented in white while gray elements are unknown.

s = (rir , ei1 , . . . , ein) with embedding H = {E,R} is

f (s,H) =
〈
rir ,ei1 , . . . ,ein

〉
. (1)

Tucker decomposition factorizes X as G ×1 R ×2 E ×3 · · · ×n+1
E, where G ∈ Rdr×de×···×de . Then, the corresponding scoring

function is

f (s,H) = G ×1 rir ×2 ei1 ×3 · · · ×n+1 ein . (2)

Unlike CP, Tucker’s core tensor G encodes the correlation between

entity and relation embeddings. Thus, the core tensor enables

different entities and relations to share the same set of knowledge

of any given N-ary relational data [3].

2.1 Binary Relational Data Learning
In the past decades, embedding approaches have been developed

as a promising method to handle binary relational data, such as

translational distance models [8, 38], neural network models [4, 10],

and tensor decomposition models [3, 19, 24, 34, 44].

As in Section 1, the expressive capability is important for

embedding models to achieve outstanding performance. Among

kinds of methods, tensor decomposition models demonstrate

their superiority in terms of expressive guarantee [19, 37] and

empirical performance [22]. More specifically, the literature [19,

24, 34, 44] have been shown to be different variants based on

the CP decomposition [22, 50]. And TuckER [3] first introduces

Tucker decomposition [21, 35] into binary relational data learning.

Generally, the comprehensive core tensor design in TuckER can

interpret CP-based tensor decomposition models (e.g., DistMult

[44], ComplEx [34], SimplE [19]) as sparse cases of various core

tensors as illustrated in Figure 1. But please note that comparedwith

TuckER, the CP-based tensor decomposition models [19, 34, 44]

show competitive performance in binary relational data without

introducing the dense core tensor. Thismotivates us to introduce the

structured sparsity into high-order tensor decomposition models

for N-ary relational data.

2.2 N-ary Relational Data Learning
As presented in Table 1, many models have been proposed to

capture n-ary facts, and tensor decomposition models are state-

of-the-arts among them. Specifically, the core tensor of n-TuckER

in (2) increases exponentially w.r.t the arity n. To address such an

over-parameterization problem, GETD [25] simplifies G with the

Table 2: A summary of common notations.

Symbol Definition

s The n-ary fact s = (rir , ei1 , . . . , ein)

E , R Embeddings E ∈ Rne×d , R ∈ Rnr ×d .

f (s ,H) The scoring function of s with H = {E , R }

M , N The number of segments, and maximum arity in given data

OP Candidate diagonal tensor OP = {−In1 , In0 , In1 }

Zn
The sparse core tensor for facts with arity n

θ The core tensor weight

· The vector dot product

⟨·⟩ The multi-linear inner product, i.e., ⟨a, b , c ⟩ =
∑d
p=1[a]p ·

[b]p · [c]p

◦ The multi-way outer product, i.e., (R ◦E ◦E)i jk = ⟨ri , ej , ek ⟩

×k The k-th mode product of G ∈ Rd1×···×dn with A ∈ RJ×dk ,

i.e., (G×k A)i1 , . . .,ik−1 , j ,ik+1 , . . .,in =
∑dk
ik=1

Gi1 , . . .,inAj ,ik .

help of Tensor Ring Decomposition [51], which can approximate

the high-order tensor G by a set of 3-order latent tensors {Wi }.

GETD first reshapes G into c-order tensor Ĝ ∈ Rd1×···×dc
with∏c

i=1 di = d
n
e dr , then decomposes Ĝ into c latent 3-order tensors

{Wi |Wi ∈ Rni×di×ni+1 }ci=1, where n1 = · · · = nc+1. As a result,
(2) is reformulated as

X ≈ TR (W1, · · · ,Wc) ×1 R
⊤ ×2 E

⊤ ×3 · · · ×n+1 E
⊤, (3)

where TR (·) denotes the Tensor Ring computation [25, 51]. The

core tensor in GETD is subsequently reduced to O(d3max), where

dmax = maxi di . However, it still requires cubic complexity, which

is hard to train. And note that X can only represent facts with a

specific arity n. Thus, existing tensor decomposition models suffer

from the data sparsity issue since they cannot leverage all facts in

n-ary relational data.

3 REFORMULATE TENSOR MODELS
Unfortunately, existing tensor decomposition models for the

N-ary relational data still suffer from data-sparsity and over-

parameterization (Section 1). First, X can only represent facts with

a specific arity n (Section 2.2), which limits existing models to

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Shimin DI, Quanming YAO, and Lei CHEN

-1
-1
-1

1
1
1

$!"
(") $!"

(#) $!"
(')

"!!
(")

"!!
(#)

"!!
(')

$! $(") $!
$
(#) $! $

(')

$!"
(") $!"

(#) $!"
(')"!!

(")

"!!
(#)

"!!
(')

$! $(")
$! $(#) $! $

(')

$!"
(") $!"

(#) $!"
(')

"!!
(")

"!!
(#)

"!!
(')

$!$ (")

$!$ (#)

$!$ (')

"!!
$!"$!$$!%

$!"" $!"#

"!!"

"!!#

$! $"
$! $#1

1

1

�

�

�

Segment Embeddings

!!
Selection

!!

…

(a) Modeling sparse core tensor Z2 .

-1
-1
-1

1
1
1

$!"
(") $!"

(#) $!"
(')

"!!
(")

"!!
(#)

"!!
(')

$! $(") $!
$
(#) $! $

(')

$!"
(") $!"

(#) $!"
(')"!!

(")

"!!
(#)

"!!
(')

$! $(")
$! $(#) $! $

(')

$!"
(") $!"

(#) $!"
(')

"!!
(")

"!!
(#)

"!!
(')

$!$ (")

$!$ (#)

$!$ (')

"!!
$!"$!$$!%

$!"
(") $!"

(#)

"!!
(")

"!!
(#)

$! $(") $!
$
(#)1

1

1

�

�

�

Segment Embeddings

!!
Selection

!!

…

(b) Modeling sparse core tensor Z3 .

Figure 2: Illustration to sparsify core tensor. Set the number of segmentsM = 3. (a) The embedding is segmented intoM parts.
Then, for the binary fact, we only utilize first 2-th embedding segments for computation and sparsify the core tensor withZ2,
of which component is selected from {I2

1 ,I
2
0 ,−I

2
1 }. (b) For 3-ary fact, we employ all 3 embedding segments for computation.

Note that the calculation performed in the red cube is I3
0 ×1 r1ir ×2 e1i1 ×3 e1i2 ×4 e1i3 .

only learn from facts with the fixed arity. This makes the data-

sparsity problem even more serious, as these models cannot fully

leverage existing facts. Besides, tensor decomposition models at

least require a huge amount of parameters to be the expressive [25].

This makes them difficult to train and easy to overfit since there

may not be enough training facts to activate the expressive power.

In the sequel, we propose a new tensor model based on sharing

embedding (Section 3.1) and sparse core tensors (Section 3.2) to

address above issues.

3.1 Share Embedding
As discussed in Section 2.2, tensor decomposition models can only

learn from the part of facts, i.e., facts with a specific arity n in N-

ary relational data, which causes more severe data sparsity issue.

Although they can be forced to jointly learn from facts with mixed

arity by share the embedding across various arities [15, 39, 48], such

embedding sharing scheme can be too restrictive and lead to poor

performance. Thus, to alleviate the data-sparsity issue, we propose

to segment embeddings and share different embedding parts across

arities for the N-ary relational data learning.

First, given the maximum arity N and number of segments M
(usually M ≤ N ≪ d), we segment embeddings of relations and

entities intoM splits, i.e., ei = [e1i ; . . . ;e
M
i] where e ji ∈ R

d/M
, and

same for relation rir . Then, given the arity n andm = min{n,M},

we utilize firstm-th segments of embeddings to compute the score.

For example, given an entity vector ei = [e1i ; . . . ;e
3
i], we use

[e1i ;e
2
i] if it involves in a binary fact and use [e1i ;e

2
i ;e

3
i] for facts

with arity 3 or even higher. Then, to handle n-ary facts, we build

a core tensor Zn
for every arity n, where Zn

is a (n + 1)-order

tensor with size md/M (e.g., Z2 ∈ R
2d/M×2d/M×2d/M

). Overall, the

proposed approach can handle the N-ary relational data with mixed

arity by learning multiple core tensors {Zn }Nn=2. Such embedding

sharing with segments can make embeddings learn from the low-

order information in the high-order fact training, but also retain a

part of the high-order specific information.

Unfortunately, each Zn
requires O((md/M)n+1) and may still

lead to over-parameterization. Next, we introduce sparse core

tensors that require much less complexity but maintains expres-

siveness.

3.2 Sparsify Core Tensor
Existing tensor decomposition models require a large number of

parameters to maintain the expressiveness for the N-ary relational

data, which makes the model inefficient and difficult to train. Thus,

the question comes that is it essential to learn a dense core tensor with
so many trainable parameters for strong expressiveness? To answer

this question, we first review the domain-specific knowledge on

binary relational data.

3.2.1 Motivation from Binary Relational Data. TuckER introduces

the dense core tensor G ∈ Rdr×de×de to achieve outstanding

performance in binary relational data. In (2), each entry Gkr ,k1,k2
in G actually interprets the correlation among embeddings at the

dimension level, i.e., the kr -th dimension of r , k1-th dimension of

e1, and k2-th dimension of e2. However, such a redundant core

tensor is hard to train and easy to overfit.

As mentioned in Section 2.1, other simple tensor-based models,

such as ComplEx [34], and SimplE [19], can be regarded to have

sparse core tensors with special patterns (see Figure 1). But

these simple models are expressive and achieve relatively good

performance without introducing dense core tensor. Consequently,

it may be unnecessary to learn a smaller complex core tensor with

an enormous amount of parameters in N-ary relational data. This

motivates us to sparsify the core tensor {Zn }Nn=2 in the n-ary case

by only interpreting the correlation among embedding segments.

3.2.2 Structured Sparsity in Core Tensors. We first divide the core

tensor Zn
into K = mn+1

tensors, denoted as Zn = {Zn
k }

K
k=1,

where Zn
k is a (n + 1)-order tensor with size d/M . After delving

deep into tensor models on binary relational data (Figure 1), we

observe that simple values (i.e., -1, 0 and 1) on the diagonal form of

the core tensor are expressive for capturing interactions. We first

Searching to Sparsify Tensor Decomposition for
N-ary Relational Data WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

define such simple interaction in the high-order scenario. A tensor

I is diagonal when Ii , j , ...,k , 0 holds if and only if i = j = · · · = k .
We use In

v to denote a (n + 1)-order tensor with size d/M , which

is diagonal with v on the super-diagonal and zeros elsewhere.

Then, we propose to select the appropriate diagonal tensor from

{−In
1 ,I

n
0 ,I

n
1 } to replace Zn

k ∈ Zn
as Figure 2 (a). Then, the

diagonal tensor In
v encodes the correlation among embedding

segments (r jrir ,e
j1
i1
, . . . ,e jnin), where −In

1 represents the negative

correlation, In
0 is no correlation, and In

1 denotes the positive

correlation. Note that any positive or negative value v can be used

forIn
v here.We utilize 1 and 0 for simplicity. Formally, we formulate

the definition of sparse core tensor as:

Definition 1 (Sparse Core Tensor). Given the embedding
dimension d , the maximum arity N and a specific arity n, let In

v
denote the (n + 1)-order diagonal tensor with size d/M , and OP =
{−In

1 ,I
n
0 ,I

n
1 } denote the operation set of candidate diagonal tensors.

Then, we propose to select everyZn
k ∈ Zn from OP. Overall, the sparse

core tensor is denoted toZn = {Zn
k }

K
k=1, which interprets facts with

the arity n.

Accordingly, given any fact s with arity ns , the scoring function

based on Zns
is formulated as:

fz (s,H ;Zns) =
∑

jr , j1, ..., jn

Z
ns
k ×1 r

jr
ir
×2 e

j1
i1
×3 · · · ×ns+1 e

jns
ins
, (4)

where any j ∈ {1, . . . ,m} and k ∈ {1, . . . ,mn+1} corresponds to

(jr , j1, . . . , jn). Compared with GETD’s core tensor O(cd3max), one

sparse core tensor Zn
has a complexity of O

(
mn+1)

. But note

thatm,n ≪ de or dr , and the arity n over 4 are really rare in the

common knowledge bases [25]. Thus, we generally set the number

of segmentsM = 4 for the N-ary relational data in practical, which

leads to a constant complexity such as 45 = 1, 024. It is far smaller

than the complexity of core tensor in GETD [25] in the real case

(e.g., 4 · 503 = 500, 000). And we theoretically demonstrate the

expressiveness of S2S sparse core tensor design as in Theorem 1.

The proof is presented in Appendix A.

Theorem 1. Given any N-ary relational data S on the sets of entity
E and relation R, there exists a set of sparse core tensors {Zn }Nn=2
with embeddings E and R that is able to accurately represent that
ground truth.

In summary, we have enabled tensor decomposition models to

learn from mixed arity and maintained the expressiveness of core

tensors with less model complexity. However, it is still a non-trivial

problem to design proper sparse core tensors {Zn }Nn=2 due to a

large number of candidates. Recall thatZn
k ∈ Zn

can be arbitrarily

and independently chosen from OP in Definition 1. Assume that

M = 4, there are totally 381 candidates forZ3
. In the next, we will

introduce how to find proper sparse core tensors by leveraging the

Neural Architecture Search (NAS) method.

4 SEARCH ALGORITHM
In general, the scoring function design should be a data-specific

problem. Since the N-ary relational data also owns specific prior-

knowledge, it is crucial to search for a set of proper sparse core

tensors that can lead to outstanding performance on various N-ary

relational data.

4.1 Problem Formulation
Continuous formulation [23, 46] and stochastic formulation [1,

40] are two popular formulations in NAS literature, they both

model choices from a given operation set as a differentiable

optimization problem. The difference is that continuous relaxation

directly couples all candidate operations together, while stochastic

relaxation samples each candidate based on a learned distribution.

Considering that −In
1 and In

1 should not be coupled together

since they are exactly the opposite, we follow stochastic relaxation

and sample Zn
k independently and stochastically from OP. For a

Zn = {Zn
k }

K
k=1, let θ

n
pk denote the probability of op ∈ OP to

be sampled for Zn
k , where

∑
p θ

n
pk = 1. Then, we utilize θn =

[θnpk]3×K maintain the probability weight for {Zn
k }

K
k=1, thus θ =

{θn }Nn=2 for all sparse core tensor {Zn }Nn=2. Moreover, we utilize

Z = {Zn }Nn=2 to represent the sampled sparse core tensor from the

categorical distributionpθ (Z). Follow [11, 18, 45], we formulate the

searching to sparsify core tensor problem as a bi-level optimization

problem in Definition 2.

Definition 2 (Search Problem). Given the training and
validation facts Stra and Sval, the sparse core tensor search problem is
defined as follows:

θ̄ = argmaxθ Epθ (Z)

[
M(H̄ ,Z; Sval)

]
, (5)

s.t. H̄ = argminH Epθ (Z)

[
L (H ,Z; Stra)

]
. (6)

Note that L (resp. M) measures the loss (resp. mean reciprocal

ranking [8, 38]) on the training (resp. validation) data. The bi-

level formulation in Definition 2 is hard to optimize since both the

embeddingH and the sparse core tensor weight θ are hierarchically

coupled. In the sequel, we propose an efficient algorithm for

optimization, which is motivated by recent NAS algorithms [1, 40].

4.2 Searching to Sparsify Core Tensor
Finally, we summarize the algorithm of searching to sparsify core

tensor in Algorithm 1, where embeddingH and core tensorweightθ
are alternatively updated. Alternating steepest ascent [1, 23, 40, 46]

is away to avoid computationally heavy optimization (5) and (6). For

any sampled sparse core tensorZ, we first optimize the embedding

H on Z with a mini-batch data in steps 3-4. Then, we evaluate the

performance of sampledZ on the updatedH , which leads to a fast

evaluation mechanism. Thus, we are able to update the core tensor

weight θ every iteration in step 5-6. After searching, we derive the

most likely sparse core tensor {Z̄n }Nn=2 with the fine-tuned θ̄ in

step 8. Finally, we learn the embedding H by training {Z̄n }Nn=2
from scratch in step 9.

Given the distribution pθ (Z), we propose to solve (6) by

minimizing the expected loss L on the training data Stra. Then,
stochastic gradient descent can be performed to optimize the

embedding H . Based on Monte-Carlo (MC) sampling [16], we

sample λ core tensor sets to approximate the gradient ∇H as

∇H Epθ (Z) [L] ≈
1

λ

∑λ

i=1
∇H L(H ,Z(i); Stra), (7)

where Z(i)
is a core tensor set that independent and identically

distributed (i.i.d.) sampled from pθ (Z), and L(H ,Z(i); Stra) is

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Shimin DI, Quanming YAO, and Lei CHEN

Algorithm 1 S2S: Searching to Sparsify Tensor Decomposition for

N-ary relational data

1: Initialize the embedding H , probability distribution pθ (Z).

2: while not converged do
3: Randomly sample a mini-batch Btra from Stra and sparse core

tensor setZ from pθ (Z);

4: Update embeddings H with ∇H Epθ (Z) [L] in (7);

5: Randomly sample a mini-batch Bval from S
val

;

6: Update the weight θ with ∇θEpθ (Z) [M] in (9);

7: end while
8: Derive final {Z̄n }Nn=2 from the fine tuned θ̄ , such as Z̄n

k = op
where p = argmaxp θ

n
pk ;

9: Achieve the final embedding H̄ by training embeddings with

{Z̄n }Nn=2 from scratch to convergence.

computed as:

L(H ,Z(i); Stra) =
∑

s ∈Stra
ℓ
(
s, fz (H ;Zns)

)
, (8)

where ℓ(·) is the extension of multi-class log-loss [22] in the n-ary

case [25] for a single fact s . Similarly, the gradient w.r.t θ can be

approximated by MC sampling as:

∇θEpθ (Z) [M] ≈
1

λ

∑λ

i=1
∇θM(H ,Z(i); S

val
). (9)

Then, we propose to leverage ASNG [1], which is the state-of-the-

art stochastic optimization technique in NAS for optimizing θ :

∇θM(H ,Z(i); S
val

)=
∑
s ∈Sval

m
(
s, fz

(
H ;Zns)) (T (

Zns)−θns) ,
wherem(·) measures the MRR performance on a single fact s and
T (·) denotes the sufficient statistic [1].

4.3 Comparison with AutoSF
The closest work in the literature of the N-ary relational data

is AutoSF [50], which proposes a NAS approach to search data-

specific and bilinear scoring functions. The proposed S2S differs

from AutoSF from three perspectives: task scenario, search space,

and search algorithm. AutoSF concerns the binary relational data

based on the unified representation of embedding approaches. We

generalize the task scenario from the binary to N-ary relational

data. Correspondingly, we propose a novel search space where we

can search for sparse core tensor in N-ary relational data. And the

search space of AutoSF is a special case of our proposed sparse core

tensor. Third, AutoSF develops an inefficient search algorithm, that

requires training hundreds of candidates to convergence. However,

the N-ary relational data requires a much larger search space, which

results in the efficiency issue become even more severe. In this

paper, we enable an efficient search algorithm ASNG [1] in our

scenario, where the desired sparse core tensor can be searched by

only training once.

5 EXPERIMENTS
All codes are implemented with PyTorch and run on a single Nvidia

RTX2080Ti GPU.

5.1 Experimental Setup
5.1.1 Data Sets. To demonstrate the performance of the proposed

method, we conduct experiments on N-ary relational data with both

various fixed arity (i.e., n = 2, 3, 4) and mixed arity. The statistics

of data sets are summarized in Table 3.

• N-ary relational data. We follow [15, 25, 30, 39, 48] to compare

various models on WikiPeople [15] and JF17K [39]. WikiPeople

mainly concerns the entities of typing humans, which is extracted

from Wikidata. And JF17K is developed from Freebase [6]. Then,

for 3-ary and 4-ary relational data, we follow GETD [25] to

filter out all 3-ary and 4-ary facts from WikiPeople and JF17K

respectively, named as JF17K-3, JF17K-4, WikiPeople-3, and

WikiPeople-4.

• Binary relational data (aka. knowledge graph). We follow [3, 8,

19, 34, 50] to conduct experiments on four public benchmark

data sets: WN18 [8], WN18RR [10], FB15k [8], FB15k237 [33].

WN18RR and FB15k237 are variants of WN18 and FB15k

respectively by removing duplicate and inverse relations.

Table 3: Summary of benchmark N-ary relational data sets.

Data set #ent #rel #Tra #Val #Tst

WikiPeople-3 12,270 66 20,656 2,582 2,582

fixed WikiPeople-4 9,528 50 12,150 1,519 1,519

n-ary JF17K-3 11,541 104 27,635 3,454 3,455

JF17K-4 6,536 23 7,607 951 951

mixed WikiPeople 47,765 707 305,725 38,223 38,281

n-ary JF17K 28,645 322 76,379 - 24,568

WN18 40,943 18 141,442 5,000 5,000

binary WN18RR 40,943 11 86,835 3,034 3,134

FB15k 14,951 1,345 484,142 50,000 59,071

FB15k237 14,541 237 272,115 17,535 20,466

5.1.2 Evaluation Metrics. We test the performance of our proposed

method on the link prediction task [49, 50], which is utilized

to complete the N-ary relational data. Given a n-ary fact s =
(rir , ei1 , . . . , ein), the embedding model assumes one entity in this

fact is missing, then it ranks all candidate entities based their scores.

We adopt the standard metrics [8, 38]:

• Mean Reciprocal Ranking (MRR): 1/|S |
∑ |S |
i=1

1/ranki , where ranki
is the ranking result, and

• Hits@T : 1/|S |
∑ |S |
i=1 I(ranki ≤ T), where I(·) is the indicator

function and T ∈ {1, 3, 10}.

Note that the higher MRR and Hits@T indicate the better quality

of embeddings. And all metrics are reported in a “filter” setting [8],

where the ranking computation is not include the corrupted facts

that exist in train, valid and test data sets.

5.1.3 Hyper-parameter Settings. The proposed method mainly

contains two steps, searching for sparse core tensor, and training

the searched core tensor to convergence. In the search strategy, we

utilize the default hyper-parameters implemented in ASNG [1] for

optimizing the core tensor weight. Then, we train the embeddings

on the searched hyper-parameter set, which is achieved by tuning

Searching to Sparsify Tensor Decomposition for
N-ary Relational Data WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Table 4: The link prediction results on the WikiPeople-3/4.

model type model

WikiPeople-3 WikiPeople-4

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

translation RAE [48] 0.239 0.168 0.252 0.379 0.150 0.080 0.149 0.273

NaLP [25] 0.301 0.226 0.327 0.445 0.342 0.237 0.400 0.540

neural network HINGE [30] 0.338 0.255 0.360 0.508 0.352 0.241 0.419 0.557

NeuInfer [14] 0.355 0.262 0.388 0.521 0.361 0.255 0.424 0.566

n-CP [25] 0.330 0.250 0.356 0.496 0.265 0.169 0.315 0.445

tensor n-TuckER [25] 0.365 0.274 0.400 0.548 0.362 0.246 0.432 0.570

decomposition GETD [25] 0.373 0.284 0.401 0.558 0.386 0.265 0.462 0.596

S2S 0.386 0.299 0.421 0.559 0.391 0.270 0.470 0.600

Table 5: The link prediction results on the JF17K-3/4.

model type model

JF17K-3 JF17K-4

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

translation RAE [48] 0.505 0.430 0.532 0.644 0.707 0.636 0.751 0.835

NaLP [25] 0.515 0.431 0.552 0.679 0.719 0.673 0.742 0.805

neural network HINGE [30] 0.587 0.509 0.621 0.738 0.745 0.700 0.775 0.842

NeuInfer [14] 0.622 0.533 0.658 0.770 0.765 0.722 0.808 0.871

n-CP [25] 0.700 0.635 0.736 0.827 0.787 0.733 0.821 0.890

tensor n-TuckER [25] 0.727 0.664 0.761 0.852 0.804 0.748 0.841 0.902

decomposition GETD [25] 0.732 0.669 0.764 0.856 0.810 0.755 0.844 0.913

S2S 0.740 0.676 0.770 0.860 0.822 0.761 0.853 0.924

CP/n-CP [22] with the help of HyperOpt [5]. This hyper-parameter

set includes the learning rate, decay rate, batch size, and embedding

dimension. Besides, we optimize the embedding with Adam

algorithm [20]. To determine the sparse core tensor for evaluation,

we run S2S five times and report average results.

5.2 N-ary Relational Data with Fixed Arity
We first compare our S2S with other models in N-ary relational

data with fixed arity, i.e., WikiPeople-3, WikiPeople-4, JF17K-3,

and JF17K-4. We adopt the n-ary tensor decomposition models,

n-CP [22], n-TuckER [3], and GTED [25], as baselines. As for the

translational model, we only include the advanced RAE [48] since it

is an upgraded version of m-TransH [39]. And we also compare the

neural network models NaLP [15], HINGE [30], and NeuInfer [14].

5.2.1 Benchmark Comparison. We demonstrate the performance

onN-ary relational datawith fixed arity in Table 4-5.We can observe

that tensor decomposition models (n-CP, n-TuckER, GETD, and S2S)

generally have better performance than other models in Table 4-5.

That is mainly because tensor decomposition models have strong

expressiveness. Then, although n-CP requires the lowest complexity

O(nede + nrdr) among tensor decomposition models, it does

not achieve the high performance as other tensor decomposition

models (e.g., n-TuckER, GETD, and S2S). That is because n-CP

does not introduce a core tensor like tensor decomposition models,

which can enable the embedding to share the domain knowledge.

Furthermore, we can observe that GETD performs better than n-

TuckER since GETD partially addresses the over-parameterized

problem in n-TuckER. Overall, our proposed S2S consistently

achieves state-of-the-art performance on all benchmark data sets

by the data-specific core tensor design.

5.2.2 Training Efficiency. Moreover, we show the learning curve of

several tensor decomposition models to compare the efficiency in

Figure 3. n-CP converges fastest due to the lowest model complexity.

The convergence rate of n-TuckER is the slowest since it requires

the most complexity. GETD converges much faster than n-TuckER

because it reduces the complexity of the core tensor. And the

convergence of S2S is only slower than that of n-CP and faster

than GETD and n-TuckER due to our sparse core tensor design.

5.3 N-ary Relational Data with Mixed Arity
To demonstrate the importance of mixed arity and superiority of

our S2S, we compare it with other advanced models on the N-ary

relational data, i.e., Wiki-People [15] and JF17K [39]. We include

the advanced translational model RAE [48], the neural networks

models NaLP [15], HINGE [30] and NeuInfer [14], and a hybrid

model HypE [13].

5.3.1 Benchmark Comparison. We show the performance on N-

ary relational data with mixed arity in Table 6. Because of

lack of expressive ability, the translational model RAE does not

achieve good performance. The neural network models [14, 15, 30]

generally outperform the translational model RAE by leveraging

complex networks. On the contrary, S2S leads to state-of-the-art

performance because of the expressive guarantee.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Shimin DI, Quanming YAO, and Lei CHEN

Table 6: The link prediction results on the multi-relational data set with mixed arity.

model

WikiPeople JF17K

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

RAE [48] 0.172 0.102 0.182 0.320 0.310 0.219 0.334 0.504

NaLP [15] 0.338 0.272 0.364 0.466 0.366 0.290 0.391 0.516

HINGE [30] 0.333 0.259 0.361 0.477 0.473 0.397 0.490 0.618

NeuInfer [14] 0.350 0.282 0.381 0.467 0.517 0.436 0.553 0.675

HypE [13] 0.292 0.162 0.375 0.502 0.494 0.408 0.538 0.656

S2S 0.372 0.277 0.439 0.533 0.528 0.457 0.570 0.690

(a) WikiPeople-3. (b) JF17K-3. (c) WikiPeople-4.

0 2000 4000 6000 8000
Time (seconds)

0.2

0.4

0.6

0.8

M
RR

GETD
n-CP
n-TuckER
S2S

(d) JF17K-4.

Figure 3: Testing MRR v.s. clock time (seconds) with fixed arity.

(a) WikiPeople. (b) JF17K.

Figure 4: Testing MRR v.s. clock time (hours) with mixed
arity.

5.3.2 Training Efficiency. In Figure 4, it is obvious that the neural

network models, i.e., NaLP [15] and NeuInfer [14], require quite a

long time to convergence. That is because these two models utilize

complex neural networks for training. On the contrary, another

neural network model HINGE [30] proposes a simple way to train

the embeddings, which converges much fast. Among all models, S2S

achieves the fastest convergence since it requires less complexity

with the sparse core tensor.

5.4 Binary Relational Data
To further demonstrate the performance of the proposed method,

we also compare S2S with classical embedding approaches on

binary relational data, i.e., WN18 [8], WN18RR [10], FB15k [8],

FB15k237 [33]. We include the most advanced translational model

RotatE [32] due to its outstanding performance among translational

models. We also compare two popular neural network models,

ConvE [10] and HypER [4]. As for tensor-based models, we include

DistMult [44], ComplEx [34], SimplE [19], HolEX [42], QuatE [49],

and TuckER [3]. Moreover, we include the recent scoring function

search method, AutoSF [50], which only concerns the binary

relational data as mentioned in Section 4.3.

5.4.1 Benchmark Comparison. The ranking performance is in

Table 7. It is clear that classical models cannot consistently achieve

good performance on various data sets, since these models are not

data-specific. AutoSF can search for a suitable scoring function for

each data set and consistently achieve outstanding performance.

The proposed S2S is also data-specific, which aims to search proper

sparse core tensor for any given data. Overall, S2S consistently

achieves state-of-the-art performance in all data sets.

5.5 Search Efficiency
To investigate the search efficiency of the proposed method, we

summarize the running time of S2S and other models on 4 binary

data sets in Table 8. We compare S2S with AutoSF in terms of

the score function search time, and stand-alone training time

of searched score function. Note that S2S sets the embedding

dimension to 512 in the search procedure for all data sets. As

for stand-alone training, we set embedding dimension for all

models at 1024. We utilize the simplest tensor decomposition

model DistMult [44] as the benchmark. In stand-alone training,

S2S significantly reduces the training time compared with TuckER

since it sparsifies the core tensor of TuckER. And the training

time of the scoring function searched by S2S is a little longer than

DistMult. That is because S2S searches a slightly more complex core

tensor than DistMult’s as illustrated in Figure 1 (b) and Figure 2 (a).

Compared with another search approach AutoSF, S2S significantly

reduces the search cost. AutoSF adopts the stand-alone evaluation

mechanism, which requires training the hundreds of candidate

scoring functions to convergence. But the proposed S2S enables an

efficient search algorithm ASNG [1], where the proper scoring

Searching to Sparsify Tensor Decomposition for
N-ary Relational Data WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Table 7: Comparison of the proposed S2S and state-of-the-art scoring functions on the link prediction task.

model model

WN18 WN18RR FB15k FB15k237

MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

translation RotatE [32] 0.949 0.944 0.959 0.476 0.428 0.571 0.797 0.746 0.884 0.338 0.241 0.533

neural ConvE [10] 0.943 0.935 0.956 0.460 0.390 0.480 0.754 0.670 0.873 0.316 0.239 0.491

network HypER [4] 0.951 0.947 0.958 0.465 0.436 0.522 0.790 0.734 0.885 0.341 0.252 0.520

HolEX [42] 0.938 0.930 0.949 - - - 0.800 0.750 0.886 - - -

QuatE [49] 0.950 0.945 0.959 0.488 0.438 0.582 0.782 0.711 0.900 0.348 0.248 0.550

tensor DistMult [44] 0.821 0.717 0.952 0.443 0.404 0.507 0.817 0.777 0.895 0.349 0.257 0.537

decomposition ComplEx [34] 0.951 0.945 0.957 0.471 0.430 0.551 0.831 0.796 0.905 0.347 0.254 0.541

SimplE [19] 0.950 0.945 0.959 0.468 0.429 0.552 0.830 0.798 0.903 0.350 0.260 0.544

TuckER [3] 0.953 0.949 0.958 0.470 0.443 0.526 0.795 0.741 0.892 0.358 0.266 0.544

GETD [25] 0.948 0.944 0.954 - - - 0.824 0.787 0.888 - - -

NAS AutoSF [50] 0.952 0.947 0.961 0.490 0.451 0.567 0.853 0.821 0.910 0.360 0.267 0.552

S2S 0.955 0.949 0.963 0.498 0.455 0.577 0.850 0.820 0.910 0.368 0.270 0.559

Table 8: Running time (in hours) analysis of several models.

data set DistMult

S2S AutoSF

TuckER

Search Training Search Training

WN18 1.9±0.1 2.0±0.2 2.4±0.1 65.7±3.0 2.4±0.1 25.4±1.5

WN18RR 0.4±0.1 1.3±0.1 0.6±0.1 38.6±1.9 0.6±0.1 18.7±1.1

FB15k 8.4±0.2 4.8±0.2 11.1±0.4 127.1±5.2 10.9±0.3 38.7±2.9

FB15k237 2.6±0.1 3.3±0.3 4.8±0.2 61.1±2.8 4.6±0.2 21.3±1.8

function can be searched by only training once (i.e., one-shot

manner). Furthermore, S2S searches only take a bit more time than

DistMult since it needs to update the architecture parameter in

search. In summary, the proposed method is very efficient in terms

of search and stand-alone training.

5.6 Case Study
Here, we demonstrate the number of operations of searched core

tensor in the below Figure 5. It indicates that S2S is data-specific,

which can search various sparse core tensor Zn
for different data

sets.

(a) binary. (b) 3-ary. (c) 4-ary.

Figure 5: The number of operations searched by S2S in
several data sets. Note that NO, POS, NEG represents In

0 , In
1 ,

and −In
1 respectively.

5.7 Ablation Study
5.7.1 The Influence of the Joint Learning. As discussed in Section 1,

the tensor decomposition models only learn embedding from part

of N-ary relational data, which causes the data sparsity issue to

become more severe. To verify this claim, we include another S2S

(mixed) learned from N-ary relational data with mixed arity to

compare the S2S (fixed) reported in Table 4 and Table 5, which is

learned from fixed arity. It is obvious that S2S (mixed) achieves

better performance, which demonstrates that only leveraging part

of N-ary relational data indeed suffers from the data-sparsity issue.

This verifies that we need to propose a tensor decomposition

model for the N-ary relational data learning. We further discuss

the effectiveness of proposed embedding sharing in Section 5.7.2.

Table 9: The performance comparison of S2S between fixed
learning and joint learning.

data set

S2S (fixed) S2S (mixed)

MRR Hits@10 MRR Hits@10

WikiPeople-3 0.386 0.559 0.408 0.577

WikiPeople-4 0.391 0.600 0.418 0.617

JF17K-3 0.740 0.860 0.752 0.870

JF17K-4 0.822 0.924 0.831 0.934

5.7.2 The Influence of the Embedding Sharing Way. In Section 5.7.1,

we show that the sparsity issue exists when models only leverage

part of N-ary relational data. As discussed in Section 3.1, it is hard

for tensor decomposition models to handle the N-ary relational data

with mixed arity. Directly sharing all embeddings across arities is

too restrictive and lead to poor performance [15, 39, 48]. Therefore,

we propose to share embeddings based on segments. To verify

claims and investigate the influence of embedding sharing ways,

we demonstrate the performance of several tensor decomposition

models on WikiPeople and JF17K as in Figure 6. Appendix B.1

introduces the details of implementing embedding sharing into

tensor decomposition models.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Shimin DI, Quanming YAO, and Lei CHEN

(a) WikiPeople. (b) JF17K.

Figure 6: The influence of different embedding sharing in
tensor models.

First, we can observe that all tensor decomposition models

achieve better performancewith sharing embedding segments. That

is because embedding sharing not only makes the embedding learn

from the low-arity fact in the high-order training but also maintain

a part of high-order knowledge. Second, it is clear that GTED and

S2S achieve better performance than n-CP in N-ary relational data.

Unlike n-CP, GTED and S2S need to learn a core tensor for facts

with every arity n. The core tensor can encode the arity-specific

knowledge, that further enhance the performance in joint learning.

5.7.3 The Influence of the Model Complexity. Previously, we
discuss the negative effect of the over-parameterized issue in

existing tensor decomposition models. As mentioned in Section 1,

cubic or even larger model complexity is easy to make the model

difficult to train. Therefore, we here investigate the influence of

model parameter size in Figure 7. Note that we do not include

the embedding as the model parameter since every model at least

require O(nede + nrdr) for embedding. Thus we plot n-CP [22] as

a horizontal line since it has no extra parameter. We can observe

that S2S can achieve outstanding performance by requiring a small

number of parameters. And its performance does not vary greatly

with the increase of model parameters. On the contrary, GETD

and n-TuckER require much larger parameter size to achieve the

high performance. And their model parameter setting will lead to

significant differences in performance. This may bring a difficulty

to the training in practical, such as the careful selection of the size

of model parameters.

(a) WikiPeople-3. (b) JF17K-3.

Figure 7: The influence of model parameters.

5.7.4 The Influence of the Structured Sparse Core Tensor. We

demonstrate the over-parameterization issue in Section 5.7.3. And

we can observe that S2S achieves outstanding performance in Table

3-6. To investigate the effectiveness of the proposed structured

Table 10: The link prediction performance of S2S(L0-reg).

data set

S2S(L0-reg) S2S

MRR Hits@10 MRR Hits@10

WikiPeople-3 0.289 0.426 0.386 0.559

WikiPeople-4 0.288 0.457 0.391 0.600

JF17K-3 0.665 0.774 0.740 0.860

JF17K-4 0.755 0.822 0.822 0.924

sparse core tensor, we compare S2S with S2S(L0-reg), which

encourages the sparse core tensor by ℓ0 constraint. S2S(L0-reg)

has the same number of non-zero elements as S2S, its sparse

pattern is not structured and non-zero elements can be arbitrarily

distributed across the core tensor. Results are in Table 10. We

can observe that the performance of S2S(L0-reg) is much worse

than the performance of S2S as reported in Table 4-5. That is

because the unstructured sparse core tensor cannot capture the

correlation between embeddings as well as the structured one. The

implementation details have been introduced in Appendix B.2.

5.7.5 The Impact of the Number of Segments. We here investigate

the effect of the different number of segments (i.e.,M) on the N-ary

relational data learning with fixed arity in Figure 8. We can observe

that S2S has good performance when the number of segments is

set to 4. And the effect is not sensitive to the parameter setting.

(a) WikiPeople-4. (b) JF17K-4.

Figure 8: The effects of the number of segments in S2S.

5.7.6 Single v.s. Bi-level Formulation. We follow NAS to formulate

Definition 2 into a bi-level optimization problem. To investigate

the impact of optimization level, we add a variant of S2S named

S2S(sig), which optimizes (5) based on training data Stra. As shown
in Table 11, the effect of S2S(sig) is generally lower than S2S. That

is because using validation data to optimize θ will encourage the

model to find core tensors that generalize well, rather than fitting

the training data well.

Table 11: The link prediction performance of S2S(sig).

data set

S2S(sig) S2S

MRR Hits@10 MRR Hits@10

WikiPeople-3 0.377 0.545 0.386 0.559

WikiPeople-4 0.380 0.592 0.391 0.600

JF17K-3 0.727 0.839 0.740 0.860

JF17K-4 0.800 0.908 0.822 0.924

Searching to Sparsify Tensor Decomposition for
N-ary Relational Data WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

6 CONCLUSION
In this paper, we propose a new tensor decomposition model, i.e.,

S2S, to learn embedding from the N-ary relational data. First, to

alleviate the data-sparsity issue, we propose to segment embeddings

into multiple parts and share them across arities by different

segments. Then, the proposed tensor decomposition model is

able to learn from the N-ary relational data with mixed arity.

Next, we present a new sparsifying method to address the over-

parameterization issue in existing tensor decomposition models but

maintain the expressiveness. Experimental results on benchmark

data sets demonstrate the effectiveness and efficiency of our

proposed model S2S.

For future works, one interesting direction is to incorporate

the N-ary relational data into kinds of applications. For example,

[9] applies the link prediction task on KGs to the recommendation

system. However, it only leverages the binary relational data, which

is a special form of N-ary relational data. Since this paper provides

a light way to handle the N-ary relational data, we may be able to

leverage the web-scale KBs to improve the performance of those

applications. Another direction worth trying is to model the N-ary

relational data with multi-relational hypergraphs and apply graph

neural networks [43]. It could be a more natural way to model the

web-scale KBs instead of multiple tensors.

7 ACKNOWLEDGEMENTS
This work is partially supported by National Key Research and

Development Program of China Grant no. 2018AAA0101100, the

Hong Kong RGC GRF Project 16202218 , CRF Project C6030-18G,

C1031-18G, C5026-18G, AOE Project AoE/E-603/18, China NSFCNo.

61729201, Guangdong Basic and Applied Basic Research Foundation

2019B151530001, Hong Kong ITC ITF grants ITS/044/18FX and

ITS/470/18FX, Microsoft Research Asia Collaborative Research

Grant, Didi-HKUST joint research lab project, and Wechat and

Webank Research Grants.

REFERENCES
[1] Y. Akimoto, S. Shirakawa, N. Yoshinari, K. Uchida, S. Saito, and K. Nishida. 2019.

Adaptive Stochastic Natural Gradient Method for One-Shot Neural Architecture

Search. In ICML. 171–180.
[2] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,

and Zachary Ives. 2007. Dbpedia: A nucleus for a web of open data. In The
semantic web. Springer, 722–735.

[3] I. Balazevic, C. Allen, and T. Hospedales. 2019. TuckER: Tensor Factorization for

Knowledge Graph Completion. In EMNLP. 5188–5197.
[4] Ivana Balažević, Carl Allen, and Timothy M Hospedales. 2019. Hypernetwork

knowledge graph embeddings. In ICANN. Springer, 553–565.
[5] James Bergstra, Daniel Yamins, and David Cox. 2013. Making a science of

model search: Hyperparameter optimization in hundreds of dimensions for vision

architectures. In ICML. 115–123.
[6] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.

2008. Freebase: a collaboratively created graph database for structuring human

knowledge. In SIGMOD. 1247–1250.
[7] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and

Oksana Yakhnenko. 2013. Irreflexive and hierarchical relations as translations.

arXiv preprint arXiv:1304.7158 (2013).
[8] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. 2013.

Translating embeddings for modeling multi-relational data. In NIPS. 2787–2795.
[9] Yixin Cao, Xiang Wang, Xiangnan He, Zikun Hu, and Tat-Seng Chua. 2019.

Unifying knowledge graph learning and recommendation: Towards a better

understanding of user preferences. In The world wide web conference. 151–161.
[10] T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel. 2018. Convolutional 2d

knowledge graph embeddings. In AAAI.
[11] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2018. Neural architecture

search: A survey. arXiv preprint arXiv:1808.05377 (2018).

[12] Patrick Ernst, Amy Siu, and Gerhard Weikum. 2018. Highlife: Higher-arity fact

harvesting. In WWW. 1013–1022.

[13] Bahare Fatemi, Perouz Taslakian, David Vazquez, and David Poole. 2019.

Knowledge hypergraphs: Prediction beyond binary relations. arXiv preprint
arXiv:1906.00137 (2019).

[14] Saiping Guan, Xiaolong Jin, Jiafeng Guo, Yuanzhuo Wang, and Xueqi Cheng.

2020. NeuInfer: Knowledge Inference on N-ary Facts. In ACL. 6141–6151.
[15] Saiping Guan, Xiaolong Jin, Yuanzhuo Wang, and Xueqi Cheng. 2019. Link

prediction on n-ary relational data. In WWW. 583–593.

[16] W Keith Hastings. 1970. Monte Carlo sampling methods using Markov chains

and their applications. (1970).

[17] Frank L Hitchcock. 1927. The expression of a tensor or a polyadic as a sum of

products. Journal of Mathematics and Physics 6, 1-4 (1927), 164–189.
[18] F. Hutter, L. Kotthoff, and J. Vanschoren. 2018. Automated Machine Learning:

Methods, Systems, Challenges. Springer.
[19] S. Kazemi and D. Poole. 2018. Simple embedding for link prediction in knowledge

graphs. In NeurIPS. 4284–4295.
[20] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980 (2014).
[21] Tamara GKolda and BrettWBader. 2009. Tensor decompositions and applications.

SIAM review 51, 3 (2009), 455–500.

[22] Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. 2018. Canonical

tensor decomposition for knowledge base completion. ICML (2018), 2863–2872.

[23] H. Liu, K. Simonyan, and Y. Yang. 2018. DARTS: Differentiable architecture

search. In ICLR.
[24] Hanxiao Liu, Yuexin Wu, and Yiming Yang. 2017. Analogical inference for multi-

relational embeddings. arXiv preprint arXiv:1705.02426 (2017).
[25] Yu Liu, Quanming Yao, and Yong Li. 2020. Generalizing Tensor Decomposition

for N-ary Relational Knowledge Bases. In WebConf. 1104–1114.
[26] Christos Louizos, Max Welling, and Diederik P Kingma. 2017. Learning Sparse

Neural Networks through L_0 Regularization. arXiv preprint arXiv:1712.01312
(2017).

[27] D. Lukovnikov, A. Fischer, J. Lehmann, and S. Auer. 2017. Neural network-based

question answering over knowledge graphs on word and character level. In

WWW. International World Wide Web Conferences Steering Committee, 1211–

1220.

[28] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich. 2015. A review of relational

machine learning for knowledge graphs. Proc. IEEE 104, 1 (2015), 11–33.

[29] Jay Pujara, Eriq Augustine, and Lise Getoor. 2017. Sparsity and noise: Where

knowledge graph embeddings fall short. In EMNLP. 1751–1756.
[30] Paolo Rosso, Dingqi Yang, and Philippe Cudré-Mauroux. 2020. Beyond triplets:

hyper-relational knowledge graph embedding for link prediction. InWebConf.
1885–1896.

[31] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: a core of

semantic knowledge. In Proceedings of the 16th international conference on World
Wide Web. 697–706.

[32] Z. Sun, Z. Deng, J. Nie, and J. Tang. 2019. Rotate: Knowledge graph embedding

by relational rotation in complex space. In ICLR.
[33] K. Toutanova and D. Chen. 2015. Observed versus latent features for knowledge

base and text inference. In Workshop on CVSMC. 57–66.
[34] T. Trouillon, Christopher R., É. Gaussier, J. Welbl, S. Riedel, and G. Bouchard.

2017. Knowledge graph completion via complex tensor factorization. JMLR 18, 1

(2017), 4735–4772.

[35] Ledyard R Tucker. 1966. Some mathematical notes on three-mode factor analysis.

Psychometrika 31, 3 (1966), 279–311.
[36] Q. Wang, Z. Mao, B. Wang, and L. Guo. 2017. Knowledge graph embedding: A

survey of approaches and applications. TKDE 29, 12 (2017), 2724–2743.

[37] Y. Wang, R. Gemulla, and H. Li. 2018. On multi-relational link prediction with

bilinear models. In AAAI.
[38] Z. Wang, J. Zhang, J. Feng, and Z. Chen. 2014. Knowledge graph embedding by

translating on hyperplanes. In AAAI.
[39] Jianfeng Wen, Jianxin Li, Yongyi Mao, Shini Chen, and Richong Zhang. 2016. On

the representation and embedding of knowledge bases beyond binary relations.

arXiv preprint arXiv:1604.08642 (2016).
[40] S. Xie, H. Zheng, C. Liu, and L. Lin. 2019. SNAS: stochastic neural architecture

search. In ICLR.
[41] Chenyan Xiong, Russell Power, and Jamie Callan. 2017. Explicit semantic ranking

for academic search via knowledge graph embedding. In Proceedings of the 26th
international conference on world wide web. 1271–1279.

[42] Y. Xue, Y. Yuan, Z. Xu, and A. Sabharwal. 2018. Expanding holographic

embeddings for knowledge completion. In NeurIPS. 4491–4501.
[43] Naganand Yadati. 2020. Neural Message Passing for Multi-Relational Ordered

and Recursive Hypergraphs. Advances in Neural Information Processing Systems
33 (2020).

[44] B. Yang, W. Yih, X. He, J. Gao, and L. Deng. 2015. Embedding entities and relations

for learning and inference in knowledge bases. In ICLR.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Shimin DI, Quanming YAO, and Lei CHEN

[45] Q. Yao and M. Wang. 2019. Taking human out of learning applications: A survey
on automated machine learning. Technical Report. arXiv preprint.

[46] Q. Yao, J. Xu, W. Tu, and Z. Zhu. 2020. Efficient Neural Architecture Search via

Proximal Iterations. In AAAI.
[47] F. Zhang, N. Jing Yuan, D. Lian, X. Xie, andW. Ma. 2016. Collaborative knowledge

base embedding for recommender systems. In SIGKDD. ACM, 353–362.

[48] Richong Zhang, Junpeng Li, Jiajie Mei, and Yongyi Mao. 2018. Scalable instance

reconstruction in knowledge bases via relatedness affiliated embedding. InWWW.

1185–1194.

[49] S. Zhang, Y. Tay, L. Yao, and Q. Liu. 2019. Quaternion knowledge graph

embeddings. In NeurIPS. 2731–2741.
[50] Y. Zhang, Q. Yao, W. Dai, and L. Chen. 2020. AutoSF: Searching Scoring Functions

for Knowledge Graph Embedding. In ICDE. IEEE.
[51] Qibin Zhao, Guoxu Zhou, Shengli Xie, Liqing Zhang, and Andrzej Cichocki. 2016.

Tensor ring decomposition. arXiv preprint arXiv:1606.05535 (2016).

A THEORETICAL ANALYSIS OF THEOREM 1
We first introduce two lemmas that will be used in the proof of

Theorem 1.

Lemma 2. Given any N-ary relational data S on the entity set E
and relation set R, n-CP [22] can accurately represents the ground
truth with |S |-dimensional embeddings, such as E,R ∈ R |S | .

Proof. For any k-th fact in N-ary relational data S , such that

s = (rir , ei1 , . . . , ein). Let the k-th element of rir ,ei1 , . . . ,ein be 1,

and set the k-th element of other r ∈ R and e ∈ E not involved in

s to 0. Then, n-CP [22] can accurately predict the given fact s =
(rir , ei1 , . . . , ein) is plausible if and only if ⟨rir ,ei1 , . . . ,ein ⟩ ≥ 1,
otherwise the fact is not fake. If ⟨rir ,ei1 , . . . ,ein ⟩ ≥ 1, there must

at least have one dimension k leads to [rir]k = [ei1]k = · · · =

[ein]k = 1. Therefore, the given fact (rir , ei1 , . . . , ein) is the k-th
fact in the data S . Similarly, if (rir , ei1 , . . . , ein) exists, there must

have ⟨rir ,ei1 , . . . ,ein ⟩ ≥ 1. □

Lemma 3. The n-CP [22] can be viewed as a special case of the S2S
sparse core tensor.

Proof. Given the embedding H = {E ∈ Rne×d ,R ∈ Rne×d },
we first segment the embedding into m parts, such as ei =

[e(1)i ; · · · ;e(m)

i]. Then, n-CP’s [22] scoring function to measure

s = (rir , ei1 , . . . , ein) is defined as:

f (s,H)=
〈
rir ,ei1 , . . . ,ein

〉
=

m∑
j=1

〈
r (j)ir
,e(j)i1 , . . . ,e

(j)
in

〉
. (10)

Next we prove that (10) is a special case of S2S’s scoring function,

which is initially defined with a sparse core tensorZn = {Zn
k }

K
k=1

as:

fz (H , s;Z
n)=

∑
jr , j1, ..., jn

Zn
k ×1r

jr
ir
×2e

j1
i1
×3 · · ·×n+1e

jn
in
, (11)

where jr , j1, . . . , jr ∈ {1, . . . ,m} and Zn
k ∈ OP = {In

−1,I
n
0 ,I

n
1 }.

Because Iv is super-diagonal with v , (11) actually perform the

tensor computation as follows:

fz (H , s;Z
n) =

∑
jr , j1, ..., jn

Zn
k ×1 r

jr
ir

×2 e
j1
i1

×3 · · · ×n+1 e
jn
in
,

=
∑

jr , j1, ..., jn

v ·

〈
r (jr)ir
,e j1i1 , . . . ,e

jn
in

〉
.

Then, we let v = 1 if and only if jr = j1 = · · · = jn . The above
equation will converted to:

fz (H , s;Z
n) =

m∑
jr=j1 · · ·=jn=1

1 ·
〈
r (jr)ir
,e j1i1 , . . . ,e

jn
in

〉
,

that is exactly same with f (s,H) in (10). Therefore, n-CP [22] is

actually a special case of S2S. □

According to Lemma 2, n-CP [22] is expressive enough to handle

any N-ary relational data, and n-CP is a special case of S2S as shown

in Lemma 3. Therefore, S2S has the sparse core tensor to represent

the ground truth of any N-ary relational data.

B EXPERIMENTAL IMPLEMENTATION
B.1 Embedding Sharing in Other Tensor

Decomposition Models
In Section 5.7.2, we implement the embedding sharing idea

mentioned in Sec 3.1 into other tensor decomposition models. Here

we briefly introduce the exact implementation.

Same with S2S, given the maximum arity N and number of

segments M , we segment embeddings into M splits, i.e., ei =
[e1i ; . . . ;e

M
i]. Then, given a fact s with arity n, we utilize firstm-th

(i.e.,m = min{n,M}) segments of embeddings to compute the score

in DistMult [44] and GETD [25]. The corresponding DistMult’s

scoring functions is defined as:

f (s,H) =

m∑
j=1

〈
r jir ,e

j
i1
, . . . ,e jin

〉
.

Moreover, the TuckER’s scoring function is defined as:

f (s,H) = Gn ×1 r
1:m
ir ×2 e

1:m
i1 ×3 · · · ×n+1 e

1:m
in

≈ TR (W1, · · · ,Wc) ×1 r
1:m
ir ×2 e

1:m
i1 ×3 · · · ×n+1 e

1:m
in

where r1:mir
,e1:mi represent the vector with first m-th segments

(e.g., e1:mi = [e1i ; . . . ;e
m
i]), and Gn

is a n + 1-order Tucker core

tensor with size md/M (e.g., G2 ∈ R
2d/M×2d/M×2d/M

). Then, TR (·)

is achieved by Tensor Ring computation [51] as mentioned in

Section 2.2.

B.2 Sparsify Core Tensor with L0 Constraint
Here we introduce the details of S2S(L0-reg), i.e., how to sparsify

the core tensor with ℓ0 constraint as in Section 5.7.4. To optimize

the core We first give the optimization objective as:

argmin
Z

L(H ,Z; S
val

) + ϵ ∥Z∥0 , (12)

where ϵ is a trade-off weight for the multi-class log loss L and

regularization. The ℓ0 norm penalizes the number of non-zero

entries in the core tensor Z = {Zn }Nn=2 (e.g., Zn
jr , j1, ..., jn

,

0). Note that S2S(L0-reg) has the same number of non-zero

elements as S2S, i.e.,mn+1
forZn

. Optimizing above objective is

computationally intractable because of its non-differentiability and

the exponential complexity. To minimize the objective, we adopt the

technique proposed in [26], which utilizes the reparameterization

trick to make it differentiable.

	Abstract
	1 Introduction
	2 Related Works
	2.1 Binary Relational Data Learning
	2.2 N-ary Relational Data Learning

	3 Reformulate Tensor Models
	3.1 Share Embedding
	3.2 Sparsify Core Tensor

	4 Search Algorithm
	4.1 Problem Formulation
	4.2 Searching to Sparsify Core Tensor
	4.3 Comparison with AutoSF

	5 Experiments
	5.1 Experimental Setup
	5.2 N-ary Relational Data with Fixed Arity
	5.3 N-ary Relational Data with Mixed Arity
	5.4 Binary Relational Data
	5.5 Search Efficiency
	5.6 Case Study
	5.7 Ablation Study

	6 Conclusion
	7 Acknowledgements
	References
	A Theoretical Analysis of Theorem 1
	B Experimental Implementation
	B.1 Embedding Sharing in Other Tensor Decomposition Models
	B.2 Sparsify Core Tensor with L0 Constraint

