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ABSTRACT
Anomaly detection in time series is a research area of increasing

importance. In order to safeguard the availability and stability of ser-

vices, large companies need to monitor various time-series data to

detect anomalies in real time for troubleshooting, thereby reducing

potential economic losses. However, in many practical applications,

time-series anomaly detection is still an intractable problem due to

the huge amount of data, complex data patterns, and limited com-

putational resources. SPOT is an ecient streaming algorithm for

anomaly detection, but it is only sensitive to extreme values in the

whole data distribution. In this paper, we propose FluxEV, a fast and
eective unsupervised anomaly detection framework. By convert-

ing the non-extreme anomalies to extreme values, our framework

addresses the limitation of SPOT and achieves a huge improvement

in the detection accuracy. Moreover, Method of Moments is adopted

to speed up the parameter estimation in the automatic threshold-

ing. Extensive experiments show that FluxEV greatly outperforms

the state-of-the-art baselines on two large public datasets while

ensuring high eciency.

CCS CONCEPTS
• Computing methodologies→ Anomaly detection; • Math-
ematics of computing→ Time series analysis.

KEYWORDS
Anomaly detection; time series; unsupervised learning

ACM Reference Format:
Jia Li, Shimin Di, Yanyan Shen, and Lei Chen. 2021. FluxEV: A Fast and

Eective Unsupervised Framework for Time-Series Anomaly Detection. In

Proceedings of the Fourteenth ACM International Conference on Web Search

∗
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for prot or commercial advantage and that copies bear this notice and the full citation

on the rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specic permission and/or a

fee. Request permissions from permissions@acm.org.

WSDM ’21, March 8–12, 2021, Virtual Event, Israel
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8297-7/21/03. . . $15.00

https://doi.org/10.1145/3437963.3441823

and Data Mining (WSDM ’21), March 8–12, 2021, Virtual Event, Israel. ACM,

New York, NY, USA, 9 pages. https://doi.org/10.1145/3437963.3441823

1 INTRODUCTION
Time series data, a series of data points in temporal order, is very

common and plays an important role in many real-world applica-

tions [14, 15]. Detecting anomalies over time series data is critical in

ensuring the availability, reliability, and security in practical scenes,

such as industry machines [25], spacecraft [16, 19], nancial trans-

actions [17, 30, 34], key performance indicators (KPIs) [12, 27, 33].

With the development of the Internet, online services have be-

comemore andmore popular. To ensure the stability and availability

of online services, large companies usually need to monitor a large

amount of time-series metrics (e.g. page views, transaction volume,

success rate, system delay) in real time. Anomaly detection aims

to identify unexpected items or events in these data streams, in

order to reduce the chance of economic loss. However, providing

anomaly detection service on online platforms is a non-trivial task

due to the following two challenging factors: large data volume

and timely response. First, hundreds of thousands or even millions

of business-related time series are generated every minute. Extract-

ing features from such large amounts of data can be very dicult

for any complex anomaly detection models. Needless to say, such

an amount of data has not been labeled and is not likely to be la-

beled manually. Moreover, online time-series anomaly detection

requires a detection algorithm to respond fast since every second

of delay may cause severe consequences. Hence the models with

high time complexity [1–3] are insucient, though they are shown

to provide outstanding accuracy. Over the past years, a variety of

works [8, 10, 11, 21–24, 26, 27, 29, 30, 32, 33, 35] were proposed

for time-series anomaly detection task. However, these algorithms

suer from one or more of the following problems: lack of labels,

unsatisfying performance, reliance on empirical parameter tun-

ing, time-consuming, retraining need, and cold-start issue (will be

further discussed in Section 2).

Among the existing works, SPOT [30] achieves outstanding per-

formance in detecting extreme values without any label-related

information, which has the potential to solve the anomaly detection

problem in large-scale time series. Meanwhile, it can be used as

an automatic thresholding block that can provide strong statistical

guarantees and adapt to the changes in data stream. However, the

eectiveness and eciency of SPOT are still unsatisfactory. On

Poster Session I  WSDM ’21, March 8–12, 2021, Virtual Event, Israel

824

https://doi.org/10.1145/3437963.3441823
https://doi.org/10.1145/3437963.3441823
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3437963.3441823&domain=pdf&date_stamp=2021-03-08


(a) (b)

Figure 1: Examples of non-extreme anomalies. Anomalies
are marked by red dots.

the one hand, SPOT is only sensitive to the extreme values in the

entire data distribution. Unfortunately, in many real-life cases, the

anomaly detection task is not only to discover extreme values in

the entire data distribution, but also the uctuations that do not t

the normal pattern. As shown in Figure 1, the marked anomalies in

red color are within the normal range of values but are uctuations

that do not meet the normal periodic patterns. In reality, such non-

extreme abnormal uctuations are very common, and SPOT fails

to handle such cases. On the other hand, the eciency of SPOT is

not as good as expected because it performs complex calculations

using Maximum Likelihood Estimation (MLE) [9], which brings

high computational overhead.

In this paper, we aim to develop a more ecient and eective so-

lution to handle time-series anomalies in real-world online services.

Inspired by the superiority of SPOT in detecting extreme values,

we propose an intuitive idea: if we can extract appropriate features

to indicate the degree of abnormality (in a stationary distribution),

and make the features of anomalies as extreme as possible, then

the problem of detecting abnormal uctuations can be solved well.

Besides, we hope to use a faster estimation method to replace MLE,

so as to improve the eciency of SPOT. Thus, in this work, we

develop FluxEV, a simple, fast, and eective unsupervised anomaly

detection framework. Specically, we rst utilize a predictor to

process time series and extract uctuations. Then we propose a

simple but eective two-step smoothing method to eliminate the

noises of uctuations and the eect of periodic patterns. Finally,

we leverage SPOT to set the thresholds automatically to make a

decision. Furthermore, under the premise of ensuring accuracy, we

adopt Method of Moments (MOM) [9] as the parameter estimation

method to improve the eciency of automatic thresholding.

The contributions of our work are summarized as follows:

• We propose a fast and ecient anomaly detection scheme

focusing on uctuation features. It is an unsupervised anom-

aly detection scheme for time-series data, which can handle

non-extreme uctuation anomalies involved in periodic pat-

terns.

• We use uctuations as the breakthrough point. For non-

extreme abnormal uctuations involving periodicity, we de-

sign a simple and eective two-step smoothing to eliminate

the noises of uctuations and the eect of periodic patterns,

so that to retain potential abnormal uctuations.

• With the help of MOM, we improve the eciency of our

anomaly detection framework by 4-6 times.

• We conduct extensive experiments on two popular public

datasets. The experiment results show that our method has

high eciency, and outperforms the current state-of-the-art

methods.

The rest of this paper is organized as follows. We introduce

related works about time-series anomaly detection in Section 2.

The problem analysis is described in Section 3. The methodology

is introduced in Section 4. We analyze the experimental results in

Section 5. Finally, we conclude our work in Section 6.

2 RELATEDWORK
Basically, time-series anomaly detection algorithms can be classi-

ed into three categories: supervised, unsupervised, and statistical

approaches. Supervised approaches usually integratemultiple detec-

tors or detection algorithms, relying on manual labels to learn how

to distinguish anomalies, such as Opprentice [23] and EGADS [21].

Despite showing promising results, in practice, such supervised ap-

proaches are not feasible due to a lack of sucient labels for training.

In recent years, some deep generative models have aroused more

attention for unsupervised anomaly detection, such as variational

auto-encoders (VAEs) [8], DONUT [33], and SeqVL [11]. However,

such complex models are relatively time-consuming and often rely

on empirical parameter tuning. Moreover, data patterns may vary

over time due to some realistic reasons (e.g. seasonality, product

upgrading, policy changes), which make existing models no longer

applicable and lead to high false-positive rates or false-negative

rates [31]. In order to maintain satisfactory accuracy, deep learning

networks must be regularly retrained to t new data patterns [37],

which is quite time-consuming and not economical. Taking into

account the eciency issue and computing resources, some tradi-

tional statistical models [10, 22, 24, 26, 29, 32, 35] are still used in

practical applications. Although statistical approaches are simple

to implement and not require on labels, they may not perform well

without expert eorts.

In recent years, some novel methods have been proposed for

anomaly detection. In 2017, two advanced approaches SPOT and

DSPOT [30] are proposed to detect outliers in streaming data, which

is ecient and only needs a few data points (according to [30],

around 1000 points) for initialization. It can set thresholds auto-

matically with strong statistical guarantees. However, SPOT is only

sensitive to extreme values in data distribution, while DSPOT can

handle simple drifting cases by a moving average.

Microsoft proposed SR and SR-CNN [27] for industrial anom-

aly detection services. The authors borrow Spectral Residual (SR)

model from the visual domain to solve the time-series anomaly

detection task. Compared to SR, SR-CNN achieves better accuracy

with a latency increase. Besides, although SR-CNN performs well,

it requires a large amount of anomaly-free data for training (accord-

ing to [27], extra 65 million points are used). However, in real-world

scenarios, it is not easy to warm start the SR-CNN since it is quite

challenging for nding proper data to pre-train the model.

3 PRELIMINARIES
In this section, we rst give the problem denition. Thenwe analyze

the anomaly detection task in online service scenarios and highlight
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(a) (b)

Figure 2: Examples of local uctuations and periodic pat-
tern.

two key points, i.e. Local Fluctuation and Periodic Pattern, from the

perspective of anomaly labeling.

3.1 Problem Statement
For the sake of brevity, we use the notations as follows. Given

arbitrary time-series data X = [X1, · · · ,Xn ], where Xi ∈ R, Xi
is the data point at time i , X denotes this whole data array, and

Xi , j = [Xi ,Xi+1, ..,X j−1,X j ] represents a window slice from time

i to j.
Then, the time-series anomaly detection task can be dened as

follows:

Problem 1. Given a real-valued time series X = [X1,X2, ..,Xn ],
the task of anomaly detection is to predict the label of each point
R = [R1,R2, ..,Rn ],Ri ∈ {0, 1}, where “1” indicates an abnormal
point. At timestamp t , only [X1,X2, ..,Xt−1,Xt ] can be used to predict
Rt , since subsequent points are not visible.

3.2 Motivations
Large companies often need to monitor tens of thousands or even

millions of metric data in real time to prevent huge economic losses

from potential anomalies. This kind of time-series data is often

related to user operations and roughly shows regular patterns at

certain intervals (e.g. daily or weekly). However, this repetitive

pattern is not strictly the same, which means that there are lo-

cal uctuations based on rough patterns. As shown in Figure 2(a)

and 2(b), the orange line shows the rough repetitive patterns, the

blue line is raw data which uctuates up and down, and the red

line denotes anomaly cases whose anomaly degree is signicantly

larger than the normal uctuation range.

In order to implement an eective anomaly detection algorithm,

we rst consider how human operators accurately nd anomalies.

As described in [36], given unlabeled time-series data, manual la-

beling usually involves two steps:

• Observation. The operator rst scans data to obtain the

information of normal patterns.

• Comparison. For candidate points, the operator needs to
make a comprehensive comparison with adjacent points

(local uctuation) and adjacent periods (periodic pattern) to

draw conclusions.

When a point enters the operator’s line of sight and is considered

a potential anomaly, its value must be signicantly dierent from

the average of the surrounding points. From the data changes over

time, we think that it has caused a large uctuation locally when

compared with previous points. However, such relatively large

local uctuations may occur frequently at the same time slots in

dierent periods and are part of the normal periodic pattern. So

in order to reach a nal decision, the operators must compare this

local uctuation with the corresponding behaviors of the adjacent

periods. Figure 2(b) gives such an example. We can observe that

a, b, d are located in the same time slot of adjacent periods, which

generally shows large local uctuations in the periods and is only

part of the normal pattern. Hence, although the uctuations of a, b,

c, and d are very close, only c will be regarded as abnormal. It is not

dicult to understand in real scenarios. In the peak hours of online

services, data usually uctuates greatly, but it does not represent

any abnormality. In o-peak time, the data usually remains stable,

then a large uctuation will be regarded as abnormal.

From the perspective of anomaly labeling, there are typically

two key points for the anomaly detection task of such data: Local
Fluctuation and Periodic Pattern. To be specic, the anomalies in

time series data are usually local uctuations that do not meet the

periodic pattern. However, most of the existing methods only focus

on the raw value itself (e.g. SPOT [30]) or the simple statistics of

raw values (e.g. traditional statistical models) or implicitly handle

the data distribution (e.g. DONUT [33]). We argue that periodicity

of uctuations must be considered for anomaly detection in online

service scenarios, otherwise both false positives and false negatives

will increase. Specically, in relatively stable time slots, a small

uctuation may be abnormal; but in unstable time slots, a large

uctuation can also be normal.

As mentioned earlier, SPOT is only sensitive to extreme values. If

we can extract appropriate features to indicate the abnormal degree

of local uctuations involved in periodical patterns, and make it a

stationary distribution, then SPOT can be directly applied. In this

paper, we take uctuations as the starting point, and consider two

main problems to be resolved: (i) how to extract local uctuations?

(ii) how to eliminate the noises and periodic eects, so as to help

SPOT achieve better results?

4 METHODOLOGY
Figure 3 depicts an overview of our proposed FluxEV framework.

It consists of four components: data preprocessing, uctuation ex-

traction, two-step smoothing, and automatic thresholding. In this

section, we will introduce these components separately and then

summarize the overall streaming detection framework.

Figure 3: FluxEV framework overview.

4.1 Data Preprocessing
Time series data in real applications often suer from missing

values due to server downtime or network crashes. Simple lling

methods (i.e. lled with zeros or average values) severely aect the
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normal data patterns, especially when the missing interval is really

long. Similarly, the widely used linear interpolation does not handle

long missing segments well. Based on Deep Generative Models,

an MCMC-based missing data imputation technique is proposed

by [28]. In [33], authors adopted such an imputation method for

time-series data with a trained VAE model. The idea is to iteratively

reconstruct the data so that the missing parts gradually conform

to the normal pattern. However, for the long missing segments, in

implementation, we found that after iterative reconstructions, the

generated values still apparently dier from normal patterns.

In order to maintain the normal patterns and introduce as few

noises as possible, we adopt a simple strategy to ll the missing

parts. The lling method is divided into two cases based on the

missing segment lengths: (1) when the missing part is shorter than

5 points, it is lled with the rst-order linear interpolation on

adjacent points; (2) otherwise, the values of the same time slot

from the previous period plus a bias (i.e. half of the dierence

between the means of the two periods,
µi−µi−1

2
) are used to ll the

missing segment. Figure 4 shows the eects of three lling methods

for a long missing segment. Our strategy can better maintain the

data patterns, thereby reducing the negative impact on subsequent

uctuation extraction.

(a) Linear (b) MCMC-based (c) Our Strategy

Figure 4: Eect contrast of three llingmethods. Blue, green,
and red curves denote normal data, missing parts with lled
values, and anomalies, respectively. For the MCMC-based
method, we utilized DONUT [33] as the trained model and
performed 100 reconstructions iteratively.

4.2 Fluctuation Extraction
Dierent from directly extracting simple statistics features in other

works [1, 2], e.g. mean, min, max, standard deviation, we focus on

uctuations in data, which is more direct and useful in indicating

anomalies.

In order to achieve a simpler and faster calculation, Exponen-

tially Weighted Moving Average (EWMA) [20] is picked as a simple

predictor instead of any deep network (e.g. LSTM [18], GRU [13]),

then the error between the current point value and the predicted

value is calculated. Here, we assume E = [E1, ..., En ] is an array

with the same length as X = [X1, ...,Xn ], and Ei stores the predic-
tion error at time i . EWMA value and prediction error are calculated

as below:

EWMA(Xi−s ,i−1) =
Xi−1 + (1 − α)Xi−2 + · · · + (1 − α)

s−1Xi−s
1 + (1 − α) + · · · + (1 − α)s−1

(1)

Ei = Xi − EWMA(Xi−s ,i−1) (2)

where α denotes the smoothing factor, and s is the window size

which means only previous s points are used to calculate the pre-

dicted value of the current point.

(a) Sequential Processing (b) Periodic Processing

Figure 5: Two types of feature processing methods.

Actually, this predicted value can also be regarded as the expected

value, then we can call the prediction error in Equation (2) as local

uctuation at the point i . Below we will introduce how to use two-

step smoothing to make normal uctuations close to zero and retain

potential abnormal uctuations.

4.3 Two-step Smoothing Processing
Recall the two key points (i.e. Local Fluctuation and Periodic Pattern)
mentioned in Section 3.2. We introduce two feature processing

methods for two-step smoothing operation: sequential and periodic,
as shown in Figure 5. Here, the lter denotes an arbitrary sliding-

window function.

In general, most of the originally extracted uctuation values

(i.e. Ei ) are in the normal range. They are slightly dierent and look

like noises (we refer to them as local noises). Besides, at dierent

time slots in one period, the degree of these local uctuations also

varies, and the same time slots in dierent periods usually have

similar uctuations (we think this is part of periodic patterns). The

smoothing is mainly to eliminate these local noises and the eect

of periodic patterns, try to make normal uctuations close to zero

and only retain potential abnormal uctuations.

First-step Smoothing is used to eliminate local noises by pro-

cessing extracted uctuation values (i.e. Ei ) sequentially, as de-
scribed in Equation (3) - (4):

∆σ = σ (Ei−s ,i ) − σ (Ei−s ,i−1) (3)

Fi = max(∆σ , 0) (4)

where Fi denotes the uctuation value at time i after the rst

smoothing, ∆σ indicates the change of standard deviation when

Ei is added to the current window Ei−s ,i−1. The rationality behind

is: a uctuation value will be retained that, if it is added to the cur-

rent local window, it would cause a great increase in the standard

deviation; otherwise, those noises with similar amplitude will ap-

proach zero after the dierence operation. Here, themax operation

means that, if the addition of a point reduces the current standard

deviation, we consider it a normal point and set its uctuation to 0.

Second-step Smoothing aims to eliminate periodic noises (i.e.

the eect of periodic patterns) by periodic processing. Before per-

forming an action on periodic data, one issue we need to consider is

data drift. That is, although the same time slots in dierent periods

usually have similar uctuations, it is not strictly one-to-one corre-

spondence. Such uctuations in dierent periods may shift left or

right in time, especially in unstable curves. Here we adopt a simple

method to deal with this kind of data drift. Suppose the current point

is Xt , the period length is l , for the p-th period prior to the current
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time, we usemax(Xt−pl−d , ..,Xt−pl−1,Xt−pl ,Xt−pl+1, ..,Xt−pl+d )
to construct the sliding window of periodic processing, instead of

Xt−pl itself. The second smoothing is dened as Equation (5) - (7).

Mi−d = max(Fi−2d ,i ) (5)

∆Fi = Fi −max

(
Mi−l (p−1), ..,Mi−2l ,Mi−l

)
(6)

Si = max(∆Fi , 0) (7)

First, we use an arrayM to store the local maximum of F (i.e. the

uctuation values after the rst-step smoothing), where d denotes

half of the window size to handle data drift, e.g. Mi−d denotes the

max value of [Fi−2d , Fi−2d+1, .., Fi−d , .., Fi−1, Fi ]. For Equation (6),

we can regard the maximum value of the local maximum of the

past p periods as the upper limit of the normal uctuation at the

current timestamp, and then use the dierence ∆Fi to express the

abnormal degree of the current uctuation. If the ∆Fi < 0, we think

it is a normal point and just set it to zero. Finally, we can get the

uctuation value Si after the second-step smoothing.

The whole process of uctuation extraction and smoothing is

summarized in Algorithm 1. There are mainly three sliding window

parameters: s , p, d . s is used to extract uctuations and the rst

sequential smoothing, p is used for the second periodic smoothing,

d is used to handle the data drift issue. l indicates the number

of points contained in one period. In particular, our uctuation

extraction and smoothing processing use past points as references,

so at the very beginning of the algorithm, we will “waste” some

points as a start-up. As shown in Algorithm 1, we can get Ei from s-
th point (line 3-4), Fi from 2s-th point (line 5-7),Mi from (2s + d)-th
point (line 8-9), and Si from (2s + d + l(p − 1))-th point (line 10-12).

Finally, we use Si to represent the abnormal degree of the data point

and use it for subsequent detection. Therefore, we will waste a total

of 2s + d + l(p − 1) points, and starting from the (2s + d + l(p − 1))-
th point, the corresponding feature values Ei , Fi ,Mi−d , Si can be

calculated in real time.

Figure 6 gives an example of the smoothing eects. We can see

that the data trend is eliminated after extracting the uctuations and

we get a stationary distribution. After the smoothing operations,

noise is signicantly suppressed, while potential abnormal uctu-

ations are retained. Essentially, this smoothing operation widens

the gap between normal and abnormal values, and makes abnor-

mal uctuations more extreme in a stationary distribution, thereby

improving the performance of anomaly detection algorithms.

4.4 MOM-based Automatic Thresholding
After the smoothing operation, potential abnormal uctuations are

retained and most of the normal uctuations are eliminated. We can

apply a single threshold to detect anomalies, i.e. if the uctuation

feature Si is larger than the threshold, then this data point will be

classied as abnormal. However, such a simple rule is too naïve to

guarantee a satisfactory performance, and a more robust decision

rule is needed. Instead, we leverage SPOT [30] to provide a strong

statistical guarantee and automatically select thresholds.

Although it is prohibitive to obtain enough labels for training

supervised models, large-scale unlabeled historical data is usually

readily available (usually minute-level data is monitored in online

services). Sucient sample points in real applications encourage

us to leverage Method of Moments (MOM) [9] as the parameter

Figure 6: Smoothing. The rst row (a) shows the raw time-
series curves and anomalies are highlighted in red; (b)
stands for originally extracted uctuations; (c)-(d) represent
the uctuation features after the rst and second smoothing
respectively.

Algorithm 1: ExtAndSmooth

Input: input data X = [X1, ..,Xn ], window sizes s , p, d ,
period l

Output: E = [E1, .., En ], F = [F1, .., Fn ], S = [S1, .., Sn ],
M = [M1, ..,Mn−d ]

1 for i = 1 to n do
2 Ei = Fi = Mi = Si = None;

3 if i > s then
4 Ei = Xi − EWMA(Xi−s ,i−1);

5 if i > 2s then
6 ∆σ = σ (Ei−s ,i ) − σ (Ei−s ,i−1);

7 Fi = max(∆σ , 0);

8 if i > 2s + 2d then
9 Mi−d = max(Fi−2d ,i );

10 if i > 2s + d + l(p − 1) then
11 ∆Fi = Fi −max

(
Mi−l (p−1), ..,Mi−2l ,Mi−l

)
;

12 Si = max(∆Fi , 0);

estimation method to further improve the eciency of SPOT. In

Section 5.5.2, our experiments show that, in FluxEV, MOM can

achieve competitive results with MLE, while improving eciency

by about 4 to 6 times.

4.4.1 SPOT Algorithm. SPOT [30] is a streaming version of Peaks-

Over-Threshold (POT) which is the second theorem in Extreme

Value Theory (EVT) [9]. The POT approach does not assume the

distribution of the monitoring data, instead, it only relies on the

distribution of extreme values, which is almost independent of the

data distribution according to EVT. The philosophy is to t the tail

distribution by Generalized Pareto Distribution (GPD):

F̄t (x) = P(X − t > x |X > t) ∼
(
1 +

γx

σ

)− 1

γ
(8)

where t is the initial threshold to retrieve the peaks; γ and σ are the

shape and scale parameters of GPD; X denotes the data point and

X − t indicates the portion over a threshold t . Hence, Equation (8)

means the portion over a threshold t , i.e. X − t , are likely to follow

a GPD with parameters γ , σ .
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Unlike the original SPOT, we estimate the parameters σ̂ and γ̂
by MOM, then the nal threshold thF can be calculated as follows:

thF = t +
σ̂

γ̂

((
qn

Nt

)−γ̂
− 1

)
(9)

where t is the initial threshold; σ̂ and γ̂ are shape and scale pa-

rameters of GPD, which will be estimated by MOM; q is the risk

coecient to determine anomalies; n is the number of current ob-

servations; Nt is the number of Xi (peaks), s.t. Xi > t .
During the streaming pipeline, such POT operations will be

updated once at each timestamp. The original SPOT is performed

directly on raw data values. In our framework, we employ automatic

thresholding of SPOT on Si (i.e. uctuation values after two-step

smoothing) to make a decision.

4.4.2 Method of Moments. The basic idea of MOM is to use sample

moments to replace population moments, and then derive unknown

parameters of the distribution from the expressions for the popula-

tionmoments. For GPD, themean and the variance can be expressed

as: E(Y ) = σ
1−γ , var (Y ) =

σ 2

(1−γ )2(1−2γ ) .

ReplacingE(Y ) by µ =
∑Nt
i=1

Yi
Nt

andvar (Y ) by S2 =
∑Nt
i=1
(Yi−µ)2
Nt−1

,

where Yi is the excesses of peaks (Yi = Xi − t for Xi > t , Xi is the
sample point and t is initial threshold) and Nt is the number of

peaks, then estimates for σ̂ and γ̂ can be computed via Equation (10)

- (11):

σ̂ =
µ

2

(1 +
µ2

S2
) (10)

γ̂ =
1

2

(1 −
µ2

S2
) (11)

After introducing MOM, we can summarize POT as Algorithm 2.

Also, it is the initialization step of SPOT.We set t to the 98% quantile;

Yt indicates the peaks set, i.e. the portion over t ; GPD parameters γ ,
σ are estimated by MOM, and the nal threshold thF is calculated

via Equation (9).

Algorithm 2: POT (Peaks-over-Threshold)

Input: input data [X1, ..,Xn ], risk q
Output: initial threshold t , nal threshold thF

1 t ← SetInitialThreshold([X1, ..,Xn ]);

2 Yt ← {Xi − t | Xi > t};

3 σ̂ , γ̂ ← MOM(Yt );
4 thF ← CalcThreshold(q, σ̂ , γ̂ ,n,Nt , t);

4.5 Overall Streaming Detection
Algorithm 3 shows our streaming detection framework. First, we

need a = 2s+d+l(p−1) points to start up the uctuation extraction
and smoothing operations (line 1-2), then we can calculate the

uctuation features in real time. After that, extrak points are used to
initialize SPOT (line 3). From the (a+k+1)-th point, we can perform
anomaly detection in a streaming fashion (i.e. perform detection and

update the threshold thF at each timestamp). It is worth mentioning

that, for the real-world datasets, after an abnormal point is detected,

we should update its Fi (i.e. the uctuation values after the rst-step
smoothing) andMi−d (i.e. the local maximum of Fi ), so as to avoid

using this abnormal value as a wrong reference for subsequent

points. Lines 17-19 show this update process. Here, None indicates
the abnormal uctuation is removed from the feature array and

will not be used as a reference for the succeeding points.

In the implementation of SPOT, the eciency is mainly limited

by the complex calculations of MLE. In our framework, we use

MOM to replace MLE to break through the computational bottle-

neck, which only needs to calculate the mean and variance of the

sample to estimate the population. Moreover, compared with the

original SPOT, at each timestamp of the streaming detection, FluxEV
only performs a small amount of additional calculations to extract

uctuations and eliminate local noise and periodic eects through

smoothing operations, which is shown in line 6 (i.e. CalcFeats)
of Algorithm 3 and dened in detail as Equation (1) - (7). From

predictor to parameter estimation method, FluxEV simplies the

calculations as much as possible to achieve higher eciency.

Algorithm 3: Streaming Detection in FluxEV

Input: input data X = [X1, ..,Xn ]; window sizes s , p, d ;
period l ; point num to initialize SPOT k ; risk q

Output: detection result Ri
1 a = 2s + d + l(p − 1);

2 E = [E1, .., Ea+k ], F = [F1, .., Fa+k ], S = [S1, .., Sa+k ],M =

[M1, ..,Ma+k−d ] ← ExtAndSmooth(X
1,a+k , s,p,d, l);

3 thF , t ← POT ([Sa+1, .., Sa+k ],q);

4 for i > a + k do
5 Ri ← 0;

6 Ei , Fi ,Mi−d , Si ← CalcFeats(Xi−s ,i , E, F ,M);

7 if Si > thF then
8 Ri ← 1;

9 else if Si > t then
10 Yi ← Si − t ;

11 Add Yi in Yt ;
12 Nt ← Nt + 1;k ← k + 1;

13 σ̂ , γ̂ ← MOM(Yt);

14 thF ← CalcThreshold(q, σ̂ , γ̂ ,k,Nt , t);

15 else
16 k ← k + 1;

17 if Ri = 1 then
18 Fi ← None;

19 Mi−d ← max(Fi−2d ,i );

5 EXPERIMENTS
5.1 Datasets
Two popular public datasets are used in our experiments: KPI [5]
and Yahoo [7]. Their statistics are shown in Table 1.

KPI dataset is provided by AIOps Challenge [5, 6]. It is a set of

desensitized KPI curves with anomaly labels from real-world sce-

narios of many Internet companies, such as Tencent, eBay, Alibaba.

Most KPIs have an interval of 1 minute, while seven KPI curves

have an interval of 5 minutes. This dataset contains some missing

points or long missing segments.
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Table 1: Detailed information of the datasets.

Dataset #Curves #Timestamps #Anomalies Missing

KPI 29 5922913 134114/2.26% 224210/3.79%

Yahoo 367 572966 3896/0.68% 0/0%

Yahoo is a benchmark dataset for time series anomaly detection

from Yahoo Labs, of which data interval is one hour. Yahoo con-

tains four groups, where A1 is the real production trac data and

A2/A3/A4 are the synthetic time series. For three synthetic groups,

the seasonalities (i.e. periodicities) are dierent. A3 and A4 have

three seasonal components (i.e. 12-hour, daily, weekly), while A2

has random seasonality. The anomalies in the real trac data are

labeled by humans, while the anomaly points of synthetic data are

algorithmically generated and inserted at random positions. All

these time-series data do not contain any missing points.

5.2 Baselines and Metrics
We compare our unsupervised framework with six state-of-the-art

algorithms using the two datasets mentioned before. The baseline

algorithms include SPOT and DSPOT [30], DONUT [33], SR and

SR-CNN [27] and SeqVL [11]. By utilizing Saliency Map (SR) as the

feature extractor and CNN network as the discriminator, SR-CNN is

trained with a large amount of synthetic data by injecting anomalies

to anomaly-free data. Among all the algorithms compared, only

SR-CNN is supervised.

We measure dierent anomaly detection methods from three

aspects: accuracy, eciency, and generality. For accuracy, we
use three metrics (i.e. precision, recall, F1-score) to evaluate the

performance. In practice, the human operators generally only care

about whether a continuous abnormal interval can be detected,

rather than every anomaly in the abnormal interval. And, it is

acceptable if a continuous abnormal interval is successfully detected

within a small delay.

Here, we follow the adjustment strategy of previous works [27,

33]. For a labeled continuous anomaly segment, if the algorithm

detects any anomaly withinm points after the start of the segment,

we think this segment is detected correctly, so every point in the

abnormal segment is counted as a true positive (TP); otherwise,

every point in the segment is counted as a false negative (FN).

The points outside the abnormal segments are not adjusted. This

adjustment strategy is illustrated in Figure 7. Specically, we set

m = 7 for minute-level time series andm = 3 for hour-level time

series, which is consistent with [6, 27].

The explosion of online business volume puts forward higher

requirements for detection eciency. Also, higher detection ef-

ciency means that more data can be processed with the same

computational resources. In our experiments, we use CPU running

times on test data to compare the eciency of dierent methods.

As discussed in [27], the time series in online business scenarios

can be divided into three typical categories: seasonal, stable, and

unstable. Similarly, we manually classify the time series in the

KPI dataset into three categories, then calculate the F1-score of

dierent classes to evaluate the generality.

Figure 7: Illustration of the adjustment strategy for perfor-
mance metrics. The rst row is the ground truth with two
anomaly segments. The second row is the prediction results
of the algorithm. The adjusted results are shown in the last
row. Here, we assume that the allowed delay is 1 point (i.e.
m = 1). Then, all points in segment I are adjusted to TPs,
while all points in segment II are counted as FNs.

5.3 Experiment Setup
During unsupervised experiments, each time series is equally di-

vided into two halves according to the temporal order, the rst

half is utilized for training unsupervised models and the second

half is used for evaluation (i.e. as test data). Since SR does not need

additional data to start, we directly apply it to the test data. In our

work, we mainly need to consider two types of parameters, the risk

coecient q for automatic thresholding and window sizes s , p, d .
Besides, KPI curves have the same periodicity (i.e. daily), but for

Yahoo, dierent groups have dierent periods and even contain

multiple seasonal components (i.e. 12-hour, daily, weekly). There-

fore, these periodicities need to be taken into account during the

second-step smoothing operation.

Risk Coecient q is a key parameter as a false-positive regu-

lator. It determines to what extent a peak value will be considered

abnormal. In [30], authors discussed the impact of the risk q and

gave a recommended value range: values of q between 10
−3

and

10
−5

allow to have a high True Positive rate (TPr) while keeping a

low False Positive rate (FPr). Specically, we set q = 3 · 10−3 and

q = 10
−3

for KPI and Yahoo, respectively.

Window Sizes. Empirically, we tend to choose relatively small

window sizes, since oversized windows will contain irrelevant uc-

tuation characteristics and periodic patterns. Here, we set s = 10,

p = 5, d = 2 for both datasets.

Periods of Yahoo Dataset. For the real production trac data

(A1), similar to KPI data, it also has a daily periodicity. We take

the number of data points in one day as the period for the second-

step smoothing. Since A2 has a random seasonality, only the rst

smoothing is applied after the uctuation extraction. Among three

seasonal components of A3 and A4, “daily” is the dominant com-

ponent by our observation, so we use “daily” as its period for the

second-step smoothing.

As the code or training data is not available, the accuracy results

of SR-CNN and SeqVl are copied from [11, 27] respectively. Except

for SR-CNN and SeqVl, all experiments are conducted in a streaming

fashion, that is, we only detect if the latest point is abnormal or

not at each timestamp. All algorithms are written in Python and

run on an Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz. For the

eciency comparison, all the results are averaged over three runs.

Specically, for DONUT, the number of z dimensions is set to 5,
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Table 2: Accuracy comparison results of various algorithms
on test Data. The supervisedmethod is marked with "*", oth-
ers are unsupervised.

KPI Yahoo
Algorithm F1-score Precision Recall F1-score Precision Recall

SPOT 0.181 0.957 0.100 0.338 0.269 0.454

DSPOT 0.488 0.542 0.444 0.316 0.241 0.458

DONUT 0.729 0.876 0.624 0.058 0.031 0.567

SR 0.654 0.636 0.673 0.576 0.466 0.752

SR-CNN* 0.771 0.797 0.747 0.652 0.816 0.542

SeqVL 0.664 0.716 0.619 0.661 0.891 0.526

FluxEV 0.790 0.858 0.732 0.666 0.707 0.630

(a) KPI Dataset (b) Yahoo Dataset

Figure 8: CPU running time on test data.

the window size K is set to 120/30 on KPI/Yahoo dataset. The risk

q is set to 10
−3

for SPOT and DSPOT. And the window size d for

DSPOT is set to 10. The rest of the congurations is kept the same

as original works.

5.4 Overall Performance
We compare FluxEV with six baselines, i.e. SPOT and DSPOT [30],

DONUT [33], SR and SR-CNN [27] and SeqVL [11]. As mentioned

earlier, since the code or training data is not available, the accuracy

results of SR-CNN and SeqVl are copied from [11, 27]. For eciency

and generality, only other four baseline methods are implemented

to construct the comparison experiments.

The accuracy comparison results of dierent algorithms are

demonstrated in Table 2. We can see that the improvement of our

method over the original SPOT is huge: FluxEv improves F1-score
by 336% on KPI and 97% on Yahoo, which shows the limitation

of the original SPOT. The results further illustrate that extreme

anomalies in data including periodic patterns are only a small part,

and by correctly processing uctuation information, our framework

can handle more anomaly cases. Compared to the best results of

unsupervised baseline solutions, our approach achieves 8.4% and

0.8% improvement in F1-score on KPI and Yahoo respectively. Even

when compared with supervised SR-CNN, we still get competitive

F1-score results: 0.790 vs 0.771 on KPI, 0.666 vs 0.652 on Yahoo.

From the CPU running time in Figure 8, we can see FluxEV
is the most ecient method. Moreover, we conduct generality
comparison experiments on the test data of KPI dataset. The results

in Table 3 show FluxEV improves the performance a lot in seasonal

and unstable data while getting a relatively poor eect on stable

data. In fact, since stable data does not contain periodicity, SPOT

can be directly applied to detect extreme values and get a satisfying

result.

Table 3: Generality comparison onKPI dataset. Std indicates
the standard deviation of the overall F1-scores for the three
classes.

Seasonal Stable Unstable Overall Std
SPOT 0.150 0.762 0.181 0.181 0.336

DSPOT 0.379 0.529 0.497 0.488 0.067
DONUT 0.700 0.051 0.740 0.729 0.392

SR 0.706 0.035 0.688 0.654 0.359

FluxEV 0.931 0.368 0.788 0.790 0.257

5.5 Impact of Dierent Components
5.5.1 Smoothing Operation. Although [4] also used EWMA and

MOM to improve the original SPOT algorithm, it lacks further

analysis and improvement for data involving periodicity. Here, we

emphasize the dierence, that is, the eect of two-step smoothing

on improving accuracy. In this section, we construct comparative

experiments of dierent smoothing cases on Yahoo Dataset. Here,

the s , p, and d are set to 10, 5, 2. Table 4 gives the comparison results.

Three smoothing cases are considered: (1) without any smooth-

ing; (2) onlywith the rst-step smoothing; (3) with two-step smooth-

ing. We notice that the smoothing operation improves performance

signicantly. Specically, the rst and second smoothing operations

increase the F1-score by 78.4% and 9.18%, respectively. Compared

to the case without any smoothing, a total of 94.7% F1-score im-

provement is achieved by the two-step smoothing.

Table 4: Eects of smoothing on Yahoo dataset.

F1-score Precision Recall

No smoothing 0.342 0.248 0.550

First-step smoothing 0.610 0.628 0.593

Two-step smoothing 0.666 0.707 0.630

5.5.2 Estimation Method. In this section, we compare the eec-

tiveness and eciency of MOM and MLE under our framework.

Four metrics are reported: (1) F1-score; (2) Recall; (3) Precision;
and (4) CPU running times on test data. To get a fair comparison,

we uniformly set s = 10, p = 5 and d = 2. Table 5 presents the

comparison results of MOM and MLE on KPI and Yahoo.

From the results, we can see that the MOM increases the detec-

tion speed by around 4 to 6 times when obtaining almost the same

results as MLE. In industrial scenarios, faster detection speed means

that under the same computational resources, more time-series data

can be covered per unit time. Moreover, MOM achieves better re-

sults than MLE on KPI dataset, which means that a suciently large

sample size can provide a certain guarantee for the performance of

MOM.

Table 5: MOM vs MLE on two datasets.

Dataset Algorithm F1-score Precision Recall Time(s)

KPI FluxEV-MLE 0.788 0.885 0.710 2525.79

FluxEV-MOM 0.790 0.858 0.732 589.67

Yahoo FluxEV-MLE 0.671 0.720 0.629 278.98

FluxEV-MOM 0.666 0.707 0.630 48.43
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5.6 Discussion on Cold-start Issue
As mentioned in Section 2, for SR-CNN [27], extra 65 million

anomaly-free points are required to generate the training data.

The acquisition of such a large amount of clean data is challenging

in reality, which is about 10 times larger than the sum of KPI and

Yahoo. Instead, our framework only needs a few periods of data

during the preparation: 2s+d+l(p−1) points to start up the calcula-
tion of features and k points to initialize the automatic thresholding.

According to [30], the error curves between the computed thresh-

old thF by SPOT and the theoretical threshold can converge when

k ' 1000. Hence, FluxEV needs a much smaller set of training data

than SR-CNN. Also, at the very beginning of the framework, we

can appropriately relax the demand for periodic data to start earlier.

Then the cold-start issue will no longer be a big problem.

6 CONCLUSION
In this paper, we proposed FluxEV, a simple, fast, and eective un-

supervised anomaly detection framework. We take uctuations as a

breakthrough point, and from the perspective of anomaly labeling,

we have emphasized two key points of anomaly detection tasks in

online services: local uctuation and periodic pattern. By convert-

ing data with periodic patterns into a stationary distribution and

expanding the gap between normal and abnormal values, FluxEV
greatly improves the performance of the original SPOT. Experi-

mentally, we compare FluxEV with six state-of-the-art algorithms

on two public datasets. The results show that FluxEV outperforms

the best-performed of all baseline solutions, even when compared

with one supervised model. Moreover, FluxEV only needs a small

amount of training data in the startup and initialization stage, its

simplicity provides high eciency for real-time detection.
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