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Recently, incremental learning has attracted a lot of interest in both research communities and industries.
Generally, given a series of data sets sequentially, it tries to achieve good performance on the new data set while
maintaining not bad performance on the old ones. Despite the recent success of incremental learning, existing
works mainly assume that the coming data set is from the feature space of old ones, i.e., homogeneous feature
space. And they adopt one feature extractor to forcibly project different feature spaces into one space. However,
this assumption is hard to hold in real-world scenarios. Especially, the attributes of tables may sequentially
increase in tabular learning. Thus, classic incremental learning models may hinder their effectiveness. In this
paper, we propose a new method, incremental tabular learning on heterogeneous feature space (ILEAHE)
to solve this issue. We first propose the ideas that feature extractors should be decomposed into shared and
specific extractors to process the shared and specific features across different data sets respectively. Then, we
propose a novel measurement named discriminative ability to measure specific extractors. Thus, two kinds of
extractors can be discriminated and the specific extractor will more focus on those domain-specific features.
We further demonstrate the effectiveness of ILEAHE through empirical studies.

CCS Concepts: • Computing methodologies → Supervised learning by classification; Online learning
settings.

Additional Key Words and Phrases: Incremental Learning, Transformer, Tabular Data

ACM Reference Format:
Hanmo Liu, Shimin Di∗, and Lei Chen. 2023. Incremental Tabular Learning on Heterogeneous Feature Space.
Proc. ACM Manag. Data 1, 1, Article 18 (May 2023), 18 pages. https://doi.org/10.1145/3588698

1 INTRODUCTION
Incremental Learning [5, 35], which is also called Continual Learning or Lifelong Learning, targets
the problem of designing a model that can sequentially adapt to new data sets, especially the model
still achieves good performance on old ones.
For instance, given images of cats and dogs, the image classification model first learns how to

classify them. Then the model needs to handle new coming data sets, like images of birds and horses,
and then elephants and fish [51]. Different from multi-class or multi-task learning which learn
all the data sets simultaneously, incremental learning assumes that the new data sets sequentially
appear, especially old ones are not available when facing the new one. However, deep learning
models would bias heavily towards new data sets and lose the memory of old ones, which may
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Fig. 1. The shared and specific attributes of different tabular data sets form heterogeneous feature spaces.

harm the effectiveness. This challenge is known as Catastrophic Forgetting [14]. Besides, as new
data sets continuously come, the incremental learning models also need to alleviate the efficiency
issue by carefully balancing the time cost for optimizing and model complexity for handling large
number of data sets.
To solve the above challenges, there has been a substantial number of works in recent years,

which can be categorized: model adaptation models [1, 12, 13, 31, 38, 42], memory replay models
[4, 19, 20, 28, 29, 37, 43, 45] , and regularization-based models [6, 11, 16, 18, 21, 25]. Model adaptation
models specialize the parameters or add supportive structures to accommodate new data sets.
Memory replay models store representative data or parameters in old ones to persevere prior
knowledge. When new data comes, the stored data or parameters will be utilized to train the model.
Regularization-based models restrict the extent of forgetting by introducing the regularization
term into the loss function. Some regularization terms keep the output of updated model on the
old data sets consistent with the output of old model on the old data sets, while other kinds try to
identify and maintain important parameters of old data. Despite the diverse angles of dealing with
the forgetting problem, these models generally employ one feature extractor 𝜃 to extract features
from all data sets [32]. They generally assume that all incremental data sets can be described by
the same feature space.

However, it is natural that different data sets come from various feature spaces. Especially, in real-
world tabular learning scenarios, it is often encountered that the attributes of the table sequentially
increase [3]. For example, when granting loans to users based on their personal profiles, the profiles
may only have the credit records in the beginning and contain purchasing behaviors later caused by
the change of collected information. For the scenario of recommending services to users of a bank,
besides the basic personal data, different related data could be included corresponding to various
services. The formation of heterogeneous feature spaces for tabular data sets is illustrated in Fig. 1.
Unfortunately, it is hard to apply existing incremental solutions with one feature extractor to such
heterogeneous feature spaces. One feature extractor will force heterogeneous feature spaces to be
projected into the same space, which leads to the specific knowledge of data sets lost.

To solve the issue on heterogeneous space, we propose a new incremental learning method for
tabular scenarios, named Incremental tabular LEArning on HEterogeneous feature space (ILEAHE).
Intuitively, although feature spaces are heterogeneous, various data sets still have some minor
correlations under the incremental setting, while others are some domain-specific features. Thus,
we propose to split the feature extractor 𝜃 into shared extractor 𝜃𝑠 and domain-specific extractors
𝜃𝑠𝑝 to capture the shared and domain-specific features correspondingly. To distinguish the shared
and specific features, we follow the intuition that the shared features should be able to support all
data sets and specific features should be especially effective for their own data set. Considering
that simply declaring the specific extractors can not fulfill the objective, we introduce the novel
discriminability score to evaluate to what extent the domain-specific feature extractor 𝜃𝑠𝑝 performs
better on its corresponding data set than the others. By maximizing the discriminability score, we
can ensure that each 𝜃𝑠𝑝 extracts domain-specific features that can best represent the corresponding
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data set. During training, 𝜃𝑠 will be trained for all the data sets, while a separate 𝜃𝑠𝑝 will be built and
trained for each data set. Afterwards, when generating predictions, the two branches of features
will be classified in parallel with their own classifiers, and the outputs will be weighted averaged
as the final prediction. For backward propagation, we use the cross entropy loss to learn the new
data set. Especially, we apply discriminative loss, which incorporates the discriminability score, to
enhance 𝜃𝑠𝑝 of the new data set. Then for the old data sets, we maintain the performance of 𝜃𝑠 on
them through regularization loss. Our contributions are summarized as follows:
• In this paper, to relax the homogeneous assumption in existing incremental learning models, we
develop a new structure of incremental learning that implements the shared and specific feature
extractors to handle data sets with heterogeneous feature spaces.

• To automatically identify domain-specific features, we propose a novel discriminability score
to measure the capability of specific extractors. Then, the specific extractor will more focus on
those features that can help the model to achieve good performance on the given data set.

• The empirical studies demonstrate the effectiveness and efficiency of our method on tabular data
sets. Especially, compared with the joint learning method that uses all data sets for training, the
proposed method still can achieve comparable results when old data sets are inaccessible.

2 RELATEDWORKS
Incremental learning aims to learn new data sets continuously, and make the model’s performance
on all learnt data sets competitive. Such settings are similar to dynamic learning [22, 23] and
transfer learning [7, 8, 34]. In general, dynamic learning and transfer learning can access past or
existing data, but incremental learning cannot.

Formally, the model 𝑓 (·) has learnt 𝑛 data sets {(𝑋 1, 𝑌 1), (𝑋 2, 𝑌 2), . . . , (𝑋𝑛, 𝑌𝑛)} and is receiving
the new data set (𝑋𝑛+1,𝑌𝑛+1). In general, the deep learning model 𝑓 (𝑋 𝑖 ) = 𝜑 ◦ 𝜃 (𝑋 𝑖 ) can be
decomposed into consecutively two parts, feature extractor 𝜃 and classifier 𝜑 , where 𝜑 gives
prediction based on the features from 𝜃 . In this paper, we use 𝑓 = �̃� ◦ 𝜃 and 𝑓 = 𝜑 ◦ 𝜃 to represent
the model before 𝑛 + 1’s increment and the model after 𝑛 + 1’s increment, respectively. The loss
function evaluating the model performance on old data sets are noted as 𝐿𝑜 and the one for the
new data set is 𝐿𝑒 . Following the setting of incremental learning, when processing the increment
on 𝑋𝑛+1, the model can only access (𝑋𝑛+1, 𝑌𝑛+1) and it should achieve the following goal:

𝜃, 𝜑 = argmin
𝜃,𝜑

𝐿𝑒
(
𝜑 ◦ 𝜃 (𝑋𝑛+1), 𝑌𝑛+1) (1)

𝑠 .𝑡 . 𝐿𝑜
(
𝜑 ◦ 𝜃 (𝑋 𝑖 ), 𝑌 𝑖

)
≤ 𝐿𝑜

(
�̃� ◦ 𝜃 (𝑋 𝑖 ), 𝑌 𝑖

)
∀ 𝑖 ≤ 𝑛. (2)

Under above formulation, we can optimize and update the model on the given new data set
𝑋𝑛+1 by optimizing the upper level problem. Generally, the upper level objective follows the classic
classification task to instantiate the loss function 𝐿𝑒 (·), like cross entropy loss: 𝐿𝑒 (𝑦𝑛+1, 𝑦𝑛+1) =
−∑

𝑘 𝑦
𝑛+1
𝑘

log(𝑦𝑛+1
𝑘

), where 𝑦𝑛+1 is the ground truth and 𝑦𝑛+1 is the prediction by the model 𝑓 after
𝑛 + 1 increment. The lower level objective maintains the effectiveness of updated model 𝜑 ◦ 𝜃 (·) on
old data sets (𝑋 𝑖 , 𝑌 𝑖 ) (𝑖 ≤ 𝑛) by constraining the loss of updated model no larger than that of model
before updating �̃� ◦ 𝜃 (·). But it is hard to preserve old performance in Eq. (2) because old data
sets are usually inaccessible during incremental setting, which leads to the Catastrophic Forgetting
problem. Three types of methods have been proposed to solve this problem: model adaptation
models, memory replay models and regularization-based models.

Model Adaptation This branch of methods focus on adjusting the model structure or modifying
parameters to learn different data sets. PNN [39] and Expert Gate [1] train a separate model for each
new data set. ACL [12] builds shared and domain-specific feature extractors, and uses adversarial
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Table 1. Summary on Important Notations.

Symbols Meanings
𝑥, 𝑋 𝑥 is an entry of data set 𝑋
𝑓 (𝑋 ) the model predicting on 𝑋

𝑋 𝑖 , 𝑌 𝑖 𝑖th data set and label

𝑓 , 𝜃, �̃�
model with extractor and classifier before learning new data

𝑓 , 𝜃, 𝜑
model with extractor and classifier after learning new data

𝑦,𝑦 prediction from 𝑓 and 𝑓

learning method to make shared features invariant to different data sets. MUC [27] uses multiple
auxiliary classifiers to make better prediction. For earlier works about parameter modification,
important parameters of old data sets are frozen by layer [31] or predicting pathway [13], and the
less important ones are reset to learn new ones. They are improved in later models [38, 42] by
applying various kinds of masks to parameters to achieve more flexible and more thorough effects.
But methods specializing parameters can hardly handle a large number of increments. Additional
structures grow the model capacity, which is inevitable when learning numerous data sets. [12].
Memory ReplayMemory Replay methods deal with the forgetting problem by replaying old

knowledge when learning the new data set. They replace the old data of the constraint Eq. (2) by
the stored memory to meet the incremental learning requirement. Let (𝑀𝑛, 𝑌𝑛

𝑀
) denote the memory

of old data set, Eq. (2) is then transformed into:

𝐿𝑜
(
𝜑 ◦ 𝜃 (𝑀𝑛), 𝑌𝑛

𝑀

)
≤ 𝐿𝑜

(
�̃� ◦ 𝜃 (𝑀𝑛), 𝑌𝑛

𝑀

)
. (3)

iCaRL [37] keeps𝑀𝑛 by storing exemplars of old data sets and uses the nearest mean representations
of data sets to make classification. GEM [29] believes minimizing 𝐿𝑜 on𝑀𝑛 introduces overfitting
problem, so that the gradients from 𝑀𝑛 are only used to avoid negative optimization on old data
sets. GEM is then improved by [4, 45] on efficiency and effectiveness. Besides, [19, 20, 28, 43] replay
old knowledge without storing raw data. But storing data faces the data privacy issue or ineffective
utilization [40], and reserving parameters adds more complexity to the model. In this paper, we
avoid storing data for a more practical scenario.

Regularization-Based This kind of methods confront forgetting by including a regularization
term. Learning without Forgetting (LwF) [25] first introduces the distillation loss [15], which
encourages the prediction distribution on old data sets to be consistent after learning new ones, to
preserve the old ones’ knowledge. Instead of minimizing the difference between the model outputs
and the ground truth at Eq. (2), LwF proposes the distillation loss to minimizing the difference
between old output 𝑦 = 𝑓 (𝑥𝑛+1) and new output 𝑦 = 𝑓 (𝑥𝑛+1) as:

𝐿𝑜𝐿𝑤𝐹 (𝑦,𝑦) = − 1
𝑛

∑︁𝑛

𝑖=1

∑︁ |𝐶𝑖 |
𝑘=1

𝑞(𝑦𝑘 ) log𝑞(𝑦𝑘 ), (4)

where 𝐶𝑖 represents different classes of the old data set 𝑋 𝑖 . The normalization function 𝑞(·) is
defined as: 𝑞(𝑎𝑘 ) = (𝑎𝑘 )1/𝑇/∑|𝐶𝑖 |

𝑘′=1 (𝑎𝑘′ )
1/𝑇 , where 𝑇 is a manually specified hyper-parameter. The

key idea of this distillation loss is to preserve the predicting behavior of the previous model for
maintaining the old performance. In addition to the prediction, more distillation mechanisms are
introduced in later works to better resist forgetting, like based on interpretability [6], feature [16]
or parameter [11].
Besides distillation, there are methods updating parameters elastically to preserve old perfor-

mance while learning new data sets. EWC [21] estimates the importance of parameters after learning
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Fig. 2. The overview of our model. Cross entropy loss 𝐿𝑒 is applied to shared and domain-specific outputs to
learn new data sets. Regularization loss 𝐿𝑜 is applied to shared extractors 𝜃𝑠 and 𝜃𝑠 for preventing forgetting
old knowledge. Discriminative loss 𝐿𝐷𝑖𝑠 is utilized to help specific extractors 𝜃𝑛+1𝑠𝑝 based on discriminability
score 𝑠 .

the old data sets, and punish the changes made to the parameters with high importance when
optimizing on a new one. The estimation is approximated by the diagonal of the old parameters’
Fisher Information Matrix. 𝐿𝑜 (·) can be expressed as:

𝐿𝑜𝐸𝑊𝐶 (𝑓 , 𝑓 ) =
1
2

|𝑓 |∑︁
𝑤=1

Ω𝑤 (𝑓𝑤 − 𝑓𝑤)2, (5)

where 𝑤 represents the model parameter, the old model has a total of |𝑓 | parameters, and Ω𝑤

is for the corresponding importance information. After learning data set 𝑋𝑛+1, Ω𝑤 is defined as:
Ω𝑤 = E(𝑋𝑛+1,𝑌𝑛+1)

[
(𝜕𝐿/𝜕𝑤)2

]
, where 𝐿 refers to the total loss of learning 𝑋𝑛+1. Following EWC, Liu

et al. [26] improved the approximation by rotating the parameter space. SI [50] also proposes an
online estimation method that updates the importance knowledge during training the new data set.
However, regularization-based methods may not effectively maintain the performance when data
sets vary too much and could prevent the model from learning new knowledge [33]. In this paper,
we improve the regularization-based methods by introducing discriminative ability.

3 METHODOLOGY
In this section, we present the incremental tabular learning on heterogeneous feature space in
detail. We formulate the problem definition in Sec. 3.1 and explain ILEAHE in Sec. 3.2 and Sec. 3.3.
The overview of ILEAHE has been shown in Fig. 2. ILEAHE uses shared and domain-specific

feature extractors, 𝜃𝑠 and 𝜃𝑠𝑝 , to handle the shared and domain-specific parts of heterogeneous
feature spaces. Similar to classic machine learning methods, both parts are trained by minimizing
cross entropy losses 𝐿𝑒 (𝑦𝑛+1𝑠 , 𝑦𝑛+1) and 𝐿𝑒 (𝑦𝑛+1𝑠𝑝 , 𝑦𝑛+1). But 𝜃𝑠 faces the forgetting problem as it
incrementally learns new data sets. Thus, we keep an old copy of shared extractor 𝜃𝑠 and use
regularization loss 𝐿𝑜 (𝑦𝑖𝑠 , 𝑦𝑖𝑠 ), 𝑖 ≤ 𝑛, to prevent the newly learnt 𝜃𝑠 from forgetting. For 𝜃𝑠𝑝 , we use
𝐿𝐷𝑖𝑠 (𝑦𝑛+1𝑠𝑝 , 𝑦𝑛+1) to help extract domain-specific features more effectively.
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Fig. 3. Illustration on the feature extraction process. Each line of tabular data will be encoded by the
Transformer. Then the embedding vector ⟨𝑇 ⟩ will be regarded as the representation of input data.

3.1 Problem Formulation
As in the examples raised before, different data sets have heterogeneous feature spaces. If we treat
them homogeneously and use a shared feature space to make prediction, the information from
different data sets will mix with each other and disturb the inference [41]. Besides, the shared
feature space can not represent all the data sets. Especially when the incoming data sets have small
correlation with the existing ones, the shared feature space could fail to describe either data sets.
Thus, to guarantee the model’s effectiveness on all learnt data sets, it is necessary to consider
different feature spaces heterogeneously. To achieve this purpose, an additional domain-specific
feature space should be considered when learning each data set, along with the shared one. In this
paper, we split the extractor 𝜃 into the shared extractor 𝜃𝑠 and domain-specific extractor 𝜃𝑠𝑝 . Then
the incremental learning problem is reformulated as:

𝜃𝑠 , 𝜃
𝑛+1
𝑠𝑝 , 𝜑 = argmin

𝜃𝑠 ,𝜃
𝑛+1
𝑠𝑝 ,𝜑

𝐿𝑒
(
𝜑 ◦ (𝜃𝑠 ◦ 𝜃𝑛+1𝑠𝑝 ) (𝑋𝑛+1), 𝑌𝑛+1

)
(6)

𝑠 .𝑡 . 𝐿𝑜
(
(𝜑𝑠 ◦ 𝜃𝑠 ) (𝑋 𝑖 ), 𝑌 𝑖

)
≤ 𝐿𝑜

(
(�̃�𝑠 ◦ 𝜃𝑠 ) (𝑋 𝑖 ), 𝑌 𝑖

)
∀ 𝑖 ≤ 𝑛,

where superscripts of 𝜃𝑠𝑝 note the correspondence between 𝜃𝑠𝑝 and its data set. After comparing
the original problem (Eq. (1), (2)) with above formulation, we can observe that existing solutions
use one feature extractor across all data sets, i.e., assuming that all features are in one shared space.
In our definition, we try to optimize the shared extractor 𝜃𝑠 and specific extractor 𝜃𝑠𝑝 for new
coming data (𝑋𝑛+1, 𝑌𝑛+1) in upper level, and maintain the model performance on old data sets
that built on the shared feature space. It is more reasonable to clearly distinguish the shared and
domain-specific parts in the incremental scenario.

3.2 Feature Extractor for Tabular Data and Discriminative Ability
3.2.1 Feature Extractors. Following the problem formulation, we use shared extractor 𝜃𝑠 and
domain-specific extractors 𝜃𝑠𝑝 to extract features from any given transaction (line) of tabular data
𝑥𝑖 ∈ 𝑋 𝑖 . We first append a token ⟨𝑇 ⟩, a randomized embedding vector, to each transaction data
𝑥𝑖 . We hope the token ⟨𝑇 ⟩ can be optimized and learnt during the training phase, thus ⟨𝑇 ⟩ can
represent the input data 𝑥𝑖 . But the number of attributes may vary in different tabular data sets, i.e.,
the length of 𝑥𝑖 may be different for 𝑖 ∈ {1, · · · , 𝑛 + 1}. Inspired by SAINT [44], we regard each data
transaction 𝑥𝑖 as a sequence and employ a promising method Transformer[47] as feature extractor
𝜃𝑠 and 𝜃𝑠𝑝 to encode 𝑥𝑖 , noted as 𝜃𝑠 (𝑥𝑖 ) and 𝜃𝑠𝑝 (𝑥𝑖 ). We omit positional embedding as the spatial
correlation of attributes provides little help for prediction. The configuration of feature extractor is
illustrated in Fig. 3. Overall, we input the randomized token together with data transaction 𝑥𝑖 to the
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Fig. 4. Calculate the discriminative ability 𝑝𝑔 (·) of specific extractor 𝜃𝑖𝑠𝑝 .

self-attention model and output the representation of 𝑥𝑖 (learnt embedding). Note that the attributes
may be categorical and numerical in real-world data sets. In this paper, categorical attributes are
embedded with an attribute-specific dictionary, while numerical attributes are embedded using a
2-layer perceptron.

3.2.2 Discriminative Ability. Intuitively, the shared features should be effective for all the learnt
data sets, while the domain-specific features should be especially effective to the corresponding data
set. This requires 𝜃𝑠𝑝 to be highly discriminative to its own data set from the others by effectiveness.
We quantify the effectiveness as the predicted possibility on the ground truth 𝑝𝑔, since a model
is effective if it gives the correct prediction with high confidence. With regards to the extractors,
effectiveness is defined as 𝑝𝑔 based on the features they extract. Because only new data sets’ labels
are available at each increment, this method is applicable only to the new ones. Following this
definition, we further introduce a score to reflect the discriminability of 𝜃𝑛+1𝑠𝑝 by comparing its
effectiveness with the old specific extractor 𝜃 𝑖𝑠𝑝 , 𝑖 ≤ 𝑛. As old data sets’ specific feature spaces
differ from the new one, 𝜃 𝑖𝑠𝑝 cannot extract meaningful features from 𝑋𝑛+1, which then defects the
predictions based on it. By treating the predictions from 𝜃 𝑖𝑠𝑝 as bottom lines, we can tell if 𝜃𝑛+1𝑠𝑝 is
more effective or not. The discriminability score 𝑠 is thus defined as the subtraction between the 𝑝𝑔
based on 𝜃𝑛+1𝑠𝑝 and the maximum 𝑝𝑔 based on {𝜃 𝑖𝑠𝑝 }𝑛𝑖=1:

𝑠 (𝜃𝑛+1𝑠𝑝 ;𝑥𝑛+1) = 𝑝𝑔 (𝜑𝑛+1
𝑠𝑝 ◦ 𝜃𝑛+1𝑠𝑝 (𝑥𝑛+1)) −max

𝑖≤𝑛

{
𝑝𝑔 (𝜑𝑛+1

𝑠𝑝 ◦ 𝜃 𝑖𝑠𝑝 (𝑥𝑛+1))
}
,

where 𝑥𝑛+1 ∈ 𝑋𝑛+1. The figure illustrating how to calculate 𝑝𝑔 is in Fig. 4. Under this definition,
large positive 𝑠 indicates that 𝜃𝑛+1𝑠𝑝 is highly discriminative, while small or even negative 𝑠 means
𝜃𝑛+1𝑠𝑝 is less effective, compared with domain-unrelated feature extractors. The maximum 𝑝𝑔 from
{𝜃 𝑖𝑠𝑝 }𝑛𝑖=1 is selected to raise a strict requirement on the discriminability of 𝜃𝑛+1𝑠𝑝 .

3.3 Framework
In this subsection, we concretely introduce three loss functions as shown in Fig. 2. In Sec. 3.2.1,
we introduce how to extract features from the input data 𝑋𝑛+1, e.g., 𝜃𝑠 (𝑥𝑛+1) and 𝜃𝑛+1𝑠𝑝 (𝑥𝑛+1). After
extraction, these features will be inputed into classifiers 𝜑𝑠 and 𝜑𝑛+1

𝑠𝑝 correspondingly and generate
predictions 𝑦𝑛+1𝑠 = 𝜑𝑠 ◦ 𝜃𝑠 (𝑥𝑛+1) and 𝑦𝑛+1𝑠𝑝 = 𝜑𝑛+1

𝑠𝑝 ◦ 𝜃𝑛+1𝑠𝑝 (𝑥𝑛+1). Then, the final prediction 𝑦𝑛+1 is
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weighted sum of 𝑦𝑛+1𝑠 and 𝑦𝑛+1𝑠𝑝 as:

𝑦𝑛+1 = 𝛼𝑦𝑛+1𝑠 + (1 − 𝛼)𝑦𝑛+1𝑠𝑝 , (7)

where 𝛼 is a trade-off hyper-parameter. Note that the predictions for old data sets 𝑋 𝑖 ,where 𝑖 ≤ 𝑛,

are in the same manner. We next introduce three losses presented in Fig. 2.
Cross Entropy Loss 𝐿𝑒 : Following the classic setting, we use cross entropy loss 𝐿𝑒 to optimize

shared and domain-specific parameters on the new data set:

𝐿𝑒 (𝑦𝑛+1𝑠 , 𝑦𝑛+1) = −𝑦𝑛+1 log𝑦𝑛+1𝑠 , (8)

𝐿𝑒 (𝑦𝑛+1𝑠𝑝 , 𝑦𝑛+1) = −𝑦𝑛+1 log𝑦𝑛+1𝑠𝑝 , (9)

where we discard the notation w.r.t. classes for simplicity.
Regularization Loss 𝐿𝑜 : Apart from optimizing the new data set 𝑋𝑛+1, the model should also

retain the old ones’ performance. We use the regularization loss 𝐿𝑜 to achieve this goal. Two
alternatives of 𝐿𝑜 , distillation loss 𝐿𝑜

𝐿𝑤𝐹
(see Eq. (4)) and EWC loss 𝐿𝑜

𝐸𝑊𝐶
(see Eq. (5)), can be

employed. For 𝐿𝑜
𝐿𝑤𝐹

, it restores the prediction behavior of 𝜑𝑠 ◦ 𝜃𝑠 to �̃�𝑠 ◦ 𝜃𝑠 , so as to prevent
forgetting. 𝐿𝑜 based on 𝐿𝑜

𝐿𝑤𝐹
is as following:

𝐿𝑜 (𝑦𝑠 , 𝑦𝑠 ) = 𝐿𝑜𝐿𝑤𝐹 (𝜑𝑠 ◦ 𝜃𝑠 (𝑥
𝑛+1), �̃�𝑠 ◦ 𝜃𝑠 (𝑥𝑛+1)) . (10)

When applying 𝐿𝑜
𝐸𝑊𝐶

that prevents forgetting by restricting the important parameters of old data
sets from changing, 𝐿𝑜 becomes following, where outputs are substituted by the corresponding
models’ parameters:

𝐿𝑜 (𝑦𝑠 , 𝑦𝑠 ) = 𝐿𝑜𝐸𝑊𝐶 (𝜑𝑠 ◦ 𝜃𝑠 , �̃�𝑠 ◦ 𝜃𝑠 ). (11)

Discriminative Loss 𝐿𝐷𝑖𝑠 : In Sec 3.2, we define discriminability score 𝑠 to measure how 𝜃𝑛+1𝑠𝑝

extracts more effective features than domain-unrelated extractors. Discriminative loss 𝐿𝐷𝑖𝑠 utilizes
this score to enhance 𝜃𝑛+1𝑠𝑝 . It is defined as

𝐿𝐷𝑖𝑠 (𝑦𝑛+1𝑠𝑝 , 𝑦𝑛+1) = − exp(−𝛾 · 𝑠 (𝑥𝑛+1)) · 𝑦𝑛+1 log(𝑦𝑛+1𝑠𝑝 ), (12)

where 𝛾 is a hyper-parameter and class notations are discarded. Under this definition, minimizing
𝐿𝐷𝑖𝑠 requires both high 𝑝𝑔 and large 𝑠 , which reflects high discriminability of 𝜃𝑛+1𝑠𝑝 .
In summary, when training on 𝑋𝑛+1, we use 𝐿𝑒 to optimize the performance of 𝜃𝑠 and 𝜃𝑛+1𝑠𝑝 .

For 𝜃𝑠 , the shared features should also be effective in the old data sets, which is ensured by the
regularization loss 𝐿𝑜 . On the other hand, 𝜃𝑛+1𝑠𝑝 should extract features especially effective in 𝑋𝑛+1,
which is achieved by adding discriminative loss 𝐿𝐷𝑖𝑠 . The final loss function can be writen as
following.

𝐿 = 𝐿𝑒 + 𝛽1𝐿
𝑜 + 𝛽2𝐿𝐷𝑖𝑠 , (13)

where 𝛽1 and 𝛽2 are factors controlling the weights of 𝐿𝑜 and 𝐿𝐷𝑖𝑠 .

4 EXPERIMENTS
In this section, Sec. 4.1 first introduces experiment setups. Sec. 4.2 presents the main experiments.
Sec. 4.3. studies the robustness of the model towards data pre-processing settings. Sec. 4.4 analyzes
the effectiveness and efficiency of ILEAHE compared with baselines. Then, Sec. 4.5 further shows
the ablation studies of different components of our model. And Sec. 4.6 demonstrates the hyperpa-
rameter sensitivity. At last, Sec. 4.7 visualizes the features learnt by shared and specific extractors.
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Table 2. The statistics of data sets. Categorical and Numerical are refer to categorical and numerical features,
Positive Rate is the ratio of data with positive classes.

Name Size # Categorical # Numerical Classes Positive Rate(%)
Bank 45,211 9 7 2 11.70

Shoppers 12,330 2 15 2 15.47
Income 32,561 8 6 2 24.08

BlastChar 7,043 17 3 2 26.54
Shrutime 10,000 4 6 2 20.37
Volkert 58,310 0 147 10 NA

Table 3. With considering the heterogeneous feature space, the following table compares our model with the
baseline models. The relative advantages of our model are stated for each type of comparison. 𝑛 refers to the
number of data sets to learn.

Models Test Effectiveness Training Efficiency Model Capacity Require Previous Data
Ord-Joint Best 𝑂 (𝑛2) 𝑂 (1) Yes
Joint Best 𝑂 (𝑛2) 𝑂 (𝑛) Yes
LwF Bad 𝑂 (𝑛) 𝑂 (1) No
EWC Medium 𝑂 (𝑛) 𝑂 (1) No
AFEC Good 𝑂 (𝑛) 𝑂 (1) No
PCL Bad 𝑂 (𝑛) 𝑂 (1) No
DMC Bad 𝑂 (𝑛) 𝑂 (1) No
ACL Bad 𝑂 (𝑛) 𝑂 (𝑛) No
PNN Good 𝑂 (𝑛) 𝑂 (𝑛2) No
MUC Good 𝑂 (𝑛) 𝑂 (𝑛) No

ILEAHE Best 𝑂 (𝑛) 𝑂 (𝑛) No

4.1 Experiment Setup
4.1.1 Dataset. We perform experiments on six data sets, whose characteristics are shown in Tab. 2.
These data sets are publicly available at UCI, Kaggle, and AutoML (automl.chalearn.org/data).
Conventionally, the input data sets of incremental learning belong to different classes, thus their
feature spaces naturally differ from each other. This applies to the volkert data set, which has
10 classes. But as the first five data sets have only two classes, we can not synthesize sub data
sets with regards to classes. Instead, we will randomly select various sets of attributes to form
the sub data sets. Thus, even though the sub data sets belong to the same classes, the feature
spaces are still heterogeneous. To further reduce the similarities among sub data sets, each of them
randomly samples 65% of the original data set for training and 20% for testing. During training, we
sequentially learn three sub data sets for the first five data sets. For volkert, we learn 2 classes at a
step and in total 5 steps, where each sub data sets’ attributes are randomly assigned as well.

4.1.2 Baselines. The adopted baselines are summarized in Tab. 3. And concrete implementations
are listed as below.
• LwF [25] is our vanilla baseline. Use only a shared extractor to extract features from different
data sets. 𝐿𝑜

𝐿𝑤𝐹
is applied to prevent forgetting at each increment.

• EWC [21] is another vanilla baseline. It identifies the important parameters for old data sets and
restrict them from changing when learning the new one, so as to prevent forgetting.
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• ACL [12] has a similar structure to ours, which also considers the shared and domain-specific
feature spaces separately. ACL uses adversarial loss to maintain the effectiveness of 𝜃𝑠 to all data
sets. We implemented their method without data replay, which corresponds to other baseline
methods.

• MUC [27] is built upon LwF or EWC. Besides regularization, they use auxiliary classifiers to
predict more effectively. MUC includes an unrelated data set to avoid the auxiliary classifiers
being identical to each other. We implement MUC based on 𝐿𝑜

𝐿𝑤𝐹
and 𝐿𝑜

𝐸𝑊𝐶
, which are noted as

MUC-LwF and MUC-EWC.
• PNN [39] builds a new branch of model for each new data set. Especially, the old models are
laterally connected to the new model to assist training.

• AFEC [48] prevents forgetting via 𝐿𝑜
𝐸𝑊𝐶

. Besides, AFEC trains a supplementary model that learns
new data set only, and by which let the major model actively forget redundant old knowledge.

• PCL [17] builds a classifier for each one of the incoming classes. It employs gradient regularization
and knowledge transfer metrics to ensure the effectiveness of all the classifiers. But PCL does not
release the code, thus no pre-trained model is available for our data sets. Without pre-trained
models, the reproduction leads to unsatisfactory performance.

• DMC [51] trains a separate model for the new data set, then distills it and the old model into
one finalized model. During distillation, DMC utilizes an external but domain-related data set
to neutralize the finalized model from new and old data sets. Because each one of our data sets
belongs to a different domain, this requirement is hard to satisfy and leads to lower performance.

In addition, we compare our model in incremental learning scenario with joint training paradigm.

• Joint-training (Joint) model uses the same shared-specific structure as ours and can access all
the old data at each increment, which perfectly satisfies the constraint of Eq. (6). Thus it has the
upper bound performance with respect to incremental learning setting. At the step 𝑛 + 1, all the
learnt data sets, including 𝑋𝑛+1, will be the input and the model will jointly optimize on them.

• Ordinary Joint-training (Ord-Joint) model uses only the shared parameter to conduct joint
training.

When conducting joint training, 𝐿𝑜 and 𝐿𝐷𝑖𝑠 , which are meant to approach the constraint Eq. (6),
will be removed and only 𝐿𝑒 used.

4.1.3 Evaluation Metrics. Following [12, 18, 29], we first use the average AUC (AAUC) to evaluate
the models’ performance on the classification task. Higher AAUC reflects better overall performance
of the model during increments. Besides, we use average forgetting (AF) to show how much the
model forgets old data set 𝑋 𝑖 after learning the subsequent data sets from 𝑋 𝑖+1 to 𝑋𝑛+1: 𝐴𝐹 =
1/𝑛 ∑𝑛

𝑖=1 (𝑅𝑖,𝑖 − 𝑅𝑛+1,𝑖 ), where 𝑅𝑢,𝑣 represents the tested AUC of data set 𝑋 𝑣 on 𝑢-th increment.
Smaller AF means the model maintains previous performance better.

4.1.4 Implementation Details. We implement ILEAHE with PyTorch [36] and the experiments
are run on a single RTX 2080 GPU. Our code is available at Github 1. We first embed inputs with
vectors of dimension 8. The Transformer encoder is employed as the feature extractor 𝜃 . The shared
extractor is composed of 4 encoder layers with 2 attention heads, while the specific extractors
reduce the encoder layers to 2. After feature extraction, fully connected (FC) layers will be applied
as the classifier 𝜑 . We use 2 FC layers to generate prediction, the dimensions of layers are 8×64 and
64×2 respectively. The optimizer is AdamW [30]. We use hyperopt [2] to tune the hyperparameters
and details are in Github.

1https://github.com/liuhanmo321/ILonHeteroFeatrueSpace
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Table 4. The experiment results of our model and baselines. They are evaluated based on AAUC and AF and
the reported results are averaged for 4 runs. For AAUC, the best result is noted by Bold and the second
best is noted by Underline. Because the Joint methods serve as upper-bound performance and are not facing
forgetting problem, they are excluded from comparison notations and AF measurements.

Model AAUC AF
Category Model Name bank blastchar income shoppers shrutime volkert overall bank blastchar income shoppers shrutime volkert overall

Joint Ord-Joint 0.8639 0.8488 0.9102 0.9098 0.8207 0.9640 0.8862 Not AvailableJoint 0.8635 0.8492 0.9104 0.9059 0.8200 0.9617 0.8851

Regular-
ization

LwF 0.8278 0.8364 0.8803 0.8943 0.7976 0.9232 0.8599 0.0490 0.0270 0.0462 0.0162 0.0222 0.0484 0.0348
EWC 0.8548 0.8413 0.9070 0.9002 0.8104 0.9593 0.8788 0.0065 0.0071 0.0026 0.0045 0.0062 0.0071 0.0056
AFEC 0.8560 0.8406 0.9064 0.9023 0.8125 0.9615 0.8799 0.0037 0.0025 0.0015 0.0034 0.0017 0.0040 0.0028
PCL 0.5285 0.5107 0.4231 0.5104 0.4508 0.5285 0.4920 -0.0239 -0.0015 0.0342 -0.0061 0.0421 -0.0300 0.0024
DMC 0.7064 0.7872 0.8436 0.7834 0.7309 0.6090 0.7434 0.0821 0.0293 0.0417 0.0888 0.0545 0.3044 0.1001

Model
Adaptation

ACL 0.8436 0.8184 0.8910 0.8792 0.7957 0.9583 0.8644 0.0212 0.0347 0.0270 0.0408 0.0239 0.0062 0.0256
PNN 0.8629 0.8439 0.9090 0.8979 0.8140 0.9631 0.8818 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MUC-LwF 0.8229 0.8249 0.8696 0.8886 0.7861 0.9232 0.8525 0.0268 0.0294 0.0596 0.0158 0.0209 0.0111 0.0273
MUC-EWC 0.8543 0.8374 0.9054 0.9040 0.8123 0.9634 0.8795 0.0015 0.0047 0.0014 0.0004 0.0006 0.0013 0.0017

Ours ILEAHE-LwF 0.8611 0.8464 0.9086 0.9035 0.8146 0.9654 0.8833 0.0003 0.0011 0.0010 0.0012 0.0004 0.0001 0.0007
ILEAHE-EWC 0.8622 0.8464 0.9090 0.9040 0.8164 0.9654 0.8839 0.0003 0.0000 0.0000 0.0017 0.0000 0.0000 0.0003

4.2 Main Result
As in Tab. 4, we compare baselines with ILEAHE. Note that ILEAHE-LwF and ILEAHE-EWC are
two versions of our methods, which use 𝐿𝑜

𝐿𝑤𝐹
(see Eq. (10)) and 𝐿𝑜

𝐸𝑊𝐶
(see Eq. (11)) respectively.

From the effectiveness view of classification results (i.e., AAUC), Joint methods have the upper-
bound performance, because they require to access the old data sets when learning a new one and
optimize on all data sets simultaneously. On the contrary, other methods receive new data sets only,
thus face forgetting problems and have lower performances. Comparing the regularization methods
with model adaptation ones, it can be seen that the latter ones generally have better performance,
which is at the cost of increasing parameter size during data set increments. It is worth noting
that MUC and ILEAHE both improve on 𝐿𝑜

𝐿𝑤𝐹
or 𝐿𝑜

𝐸𝑊𝐶
, but the AAUCs of MUC are lower than

ILEAHE’s. Because ILEAHE uses 𝜃𝑠𝑝 to better describe the feature space, while MUC is based
solely on 𝜃𝑠 . Compared with all the baselines, ILEAHE achieves the best results and approaches the
performances of Joint paradigm. Especially for volkert, ILEAHE even outperforms Joint methods.
Because the sub data sets of volkert vary in size, which is hard for joint optimization.
From the forgetting view of incremental learning models (i.e., AF), LwF, DMC and MUC-LwF

have larger AF, because they only use 𝜃𝑠 and rely on distillation to prevent forgetting, which is
unstable. ACL also suffers from forgetting because adversarial loss without assistance from old data
is less effective. The negative AF of PCL shows its ability to improve the old performance when
learning the new data sets. Because PCL actively transfers knowledge among old and new data
sets when training the classifiers. AF of PNN is zero, because the parameters of each data set are
independent and unchanged after optimization. For ILEAHE, benefiting from 𝜃𝑠𝑝 , the forgetting
issue from 𝜃𝑠 is largely suppressed and AF is close to zero.

4.3 Robustness Analysis to Data Pre-processing
In our experiments, we randomly select attributes to form different sub data sets (i.e., data pre-
processing) to mimic the incremental tabular learning in the real scenario. As shown in Fig. 5, we
conduct more experiments to show the robustness of various models to data pre-processing. More
detailed results (e.g., concrete AAUC and STD) can be found on Github.

4.3.1 Order of sub data sets. For one group of data sets (e.g., {𝑋 1, 𝑋 2, 𝑋 3}), the orders of input data
sets (e.g., [𝑋 1, 𝑋 3, 𝑋 2] and [𝑋 3, 𝑋 1, 𝑋 2]) may affect the performance of the given model. As shown
in Fig. 5a, we present the results of several promising models on the same group of data sets in 3
different orders. Compared with PNN and MUC-EWC, ILEAHE-EWC provides more consistent and
better performance. Because 𝐿𝑜

𝐸𝑊𝐶
focuses on the change of parameters and is robust under different
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(a) 3 orders (b) 10 sets of random attributes

Fig. 5. Compare the model performance and standard deviation under: (a) different orders, (b) different sets
of attributes. For one dataset, relative AAUC is the difference between AAUC of one model and the lowest
AAUC on that dataset. Standard deviation is noted as error bar.

(a) AAUC vs time/parameter (b) time vs parameter

Fig. 6. Effectiveness-efficiency comparison on volkert. PCL and DMC are omitted in AAUC comparison for
their inferior AAUC performance (see Tab. 4).

orders. And 𝜃𝑠𝑝 is optimized regardless of orders. However, the correlation between the old shared
extractor and new data set varies with order, which affects 𝐿𝑜

𝐿𝑤𝐹
and destabilizes ILEAHE-LwF.

4.3.2 Selection of attributes. For a tabular data set, the predicting ability of its attributes varies
from one another. If the predictive attributes are not selected for a sub data set, it will be hard to
extract effective features. So that in Fig. 5b, we present the results on 10 sets of differently selected
attributes to show the robustness of the models. By considering all datasets, ILEAHE-EWC has the
most robust and best performance, as ensemble prediction from 𝜃𝑠 and 𝜃𝑠𝑝 reduces uncertainty and
brings effectiveness.

4.4 Efficiency Studies
In this part, we compare the efficiency between ILEAHE and baselines on volkert from aspects of
training time cost and parameter size in Fig. 6. Full effectiveness-efficiency comparison results on
all datasets are in Github.
In Fig. 6a, we compare the AAUC versus time cost and parameter size for all models. LwF and

EWC, as vanilla baselines, are using shorter time and the smallest parameter size, yet have inferior
AAUC. Joint and Ord-Joint access all datasets in training, thus they use the longest time to train. For
strong baselines, PNN has mediate time cost but a much larger parameter size. On other hand, MUC
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Table 5. Ablation study results. Check mark means the corresponding component of the model is applied.
The reported results are averaged for 4 runs. Time is reported with Seconds.

Model Components Data Set

# 𝜃𝑠 𝜃𝑠𝑝 𝐿𝑜
𝐿𝑤𝐹

𝐿𝑜
𝐸𝑊𝐶

𝐿𝐷𝑖𝑠
bank blastchar income shoppers shrutime volkert

AAUC time AAUC time AAUC time AAUC time AAUC time AAUC time
1 ✓ 0.7854 583 0.8171 152 0.8611 411 0.8789 185 0.7890 163 0.9174 3065
2 ✓ ✓ 0.8205 457 0.8316 137 0.8708 207 0.8833 208 0.7950 184 0.9402 1593
3 ✓ ✓ 0.8548 596 0.8355 151 0.9034 542 0.9020 257 0.8081 206 0.9632 2702
4 ✓ 0.8607 625 0.8438 157 0.9091 420 0.9004 215 0.8149 227 0.9558 3568
5 ✓ ✓ 0.8612 573 0.8443 148 0.9094 381 0.9013 208 0.8175 200 0.9645 2629
6 ✓ ✓ 0.8575 945 0.8443 190 0.9066 532 0.9000 270 0.8126 265 0.9646 3863
7 ✓ ✓ ✓ 0.8597 774 0.8445 218 0.9074 630 0.9019 259 0.8141 307 0.9646 3251
8 ✓ ✓ ✓ 0.8374 985 0.8421 208 0.9026 706 0.9012 265 0.8123 302 0.9577 3431
9 ✓ ✓ ✓ 0.8621 874 0.8415 193 0.9092 662 0.9020 311 0.8162 335 0.9647 3183
10 ✓ ✓ ✓ ✓ 0.8611 1117 0.8464 204 0.9086 799 0.9035 293 0.8146 325 0.9654 2812
11 ✓ ✓ ✓ ✓ 0.8622 974 0.8464 199 0.9090 793 0.9040 333 0.8164 334 0.9654 4846

takes a longer time and larger parameter size than ILEAHE. For the other baselines, although their
efficiencies are better than ILEAHE, their AAUCs are all lower. Among all the baselines, ILEAHE
has the best performance with medium time cost and parameter size. In short, ILEAHE trades a
moderate amount of time and parameters for the best performance. This is better illustrated in
Fig. 6b, which compares models in time and parameter. It shows that the baselines with higher
efficiency (bottom left to ILEAHE in Fig. 6b) are inferior to ILEAHE in terms of effectiveness. To
achieve comparable performance to ILEAHE, the other baselines either take a longer time or need
more parameters (top right to ILEAHE in Fig. 6b).

4.5 Ablation Studies
In this part, we show the effectiveness brought by each components in our model, as well as
the trade off on the efficiency. The ablated parts are listed in Tab. 5. Note that we discard some
combinations since they cannot form a complete model for training.

4.5.1 Regularization Loss. Comparing the entries #1, #2 and #3, applying regularization loss releases
the forgetting problem. However 𝐿𝑜

𝐿𝑤𝐹
is less effective than 𝐿𝑜

𝐸𝑊𝐶
in our experiments. Because

the feature is extracted by using ⟨𝑇 ⟩ to query the knowledge of input data through self-attention
mechanism. For an unseen data set, the extractor has no knowledge about it, so that ⟨𝑇 ⟩ can not
provide meaningful features, which eventually defects prediction. Then it is misleading for 𝐿𝑜

𝐿𝑤𝐹
to

use the old model’s prediction on new data set to regularize the new model. 𝐿𝑜
𝐸𝑊𝐶

, however, avoids
this problem by directly regularizing the parameters. Adding either 𝐿𝑜

𝐿𝑤𝐹
or 𝐿𝑜

𝐸𝑊𝐶
does not lead to

a significant increase in time cost, as they help the model converge faster.

4.5.2 Discriminative Loss. By comparing entries #4 and #5, it is shown that 𝐿𝐷𝑖𝑠 improves the
specific parameters for all data sets. Although 𝐿𝐷𝑖𝑠 is costly for computation, the model converges
faster as the objective is more effective and compensates the cost spent on 𝐿𝐷𝑖𝑠 .

4.5.3 Shared and Specific Extractors. Entries from #6 to #11 compare the additional effectiveness
brought by combining the shared and specific parts. For #6 and #7, where no 𝐿𝑜 is applied, their
performances are inferior to using only specific extractor. Because the forgetting problem of 𝜃𝑠
negatively affects the ensemble prediction. Comparing #6, #8, #9 with #1, #2, #3 correspondingly, the
combination with 𝜃𝑠𝑝 notably improves 𝜃𝑠 . At last for #10 and #11, which are actually ILEAHE-LwF
and ILEAHE-EWC, the performance becomes optimal. Because the parameter size is increased
after combination, the time cost is also larger. However, compared with #6, adding either 𝐿𝑜 or 𝐿𝐷𝑖𝑠

does not increase the time cost significantly, since either of them can help model to converge and
compensate the computation cost spent on it.
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Table 6. Experiment of using MLP and RNN as basic extractor structures. The results are averaged for 4 runs.
Bold for the best result and Underline for the second best. Comparison is within each extractor type and
Joint is excluded from notations.

Extractor Type Model bank blastchar income shoppers shrutime volkert Avg AAUC for all datasetsAAUC std AAUC std AAUC std AAUC std AAUC std AAUC std

RNN

Joint 0.8593 0.0012 0.8300 0.0015 0.9106 0.0020 0.8955 0.0026 0.8176 0.0015 0.9337 0.0015 0.8745
PNN 0.8542 0.0061 0.8261 0.0035 0.9049 0.0034 0.8889 0.0015 0.8124 0.0009 0.9147 0.0527 0.8669

MUC-EWC 0.8399 0.0096 0.8137 0.0073 0.9013 0.0034 0.8870 0.0022 0.7946 0.0040 0.9361 0.0396 0.8621
ILEAHE-LwF 0.8529 0.0044 0.8181 0.0063 0.9045 0.0025 0.8884 0.0014 0.8008 0.0046 0.9035 0.0268 0.8614
ILEAHE-EWC 0.8549 0.0021 0.8208 0.0026 0.9069 0.0007 0.8881 0.0019 0.7983 0.0032 0.9371 0.0082 0.8677

MLP

Joint 0.8598 0.0026 0.8486 0.0006 0.9038 0.0021 0.9133 0.0012 0.8264 0.0013 0.9793 0.0013 0.8885
PNN 0.8528 0.0035 0.8314 0.0021 0.9041 0.0021 0.8784 0.0200 0.8040 0.0037 0.9733 0.0006 0.8740

MUC-EWC 0.8670 0.0016 0.8464 0.0012 0.9090 0.0008 0.9089 0.0016 0.8150 0.0039 0.9653 0.0020 0.8853
ILEAHE-LwF 0.8658 0.0009 0.8458 0.0000 0.9102 0.0004 0.9076 0.0010 0.8154 0.0046 0.9758 0.0003 0.8868
ILEAHE-EWC 0.8673 0.0008 0.8461 0.0014 0.9098 0.0004 0.9097 0.0011 0.8144 0.0019 0.9765 0.0011 0.8873

Transformer ILEAHE-LwF 0.8611 0.0021 0.8464 0.0028 0.9086 0.0011 0.9035 0.0050 0.8146 0.0001 0.9654 0.0006 0.8833
ILEAHE-EWC 0.8622 0.0008 0.8464 0.0031 0.9090 0.0007 0.9040 0.0022 0.8164 0.0029 0.9654 0.0007 0.8839

Fig. 7. Hyperparameter sensitivity of ILEAHE-LwF (Upper row) and ILEAHE-EWC (Lower row) on shrutime.
The results are averaged for 4 runs.

4.5.4 Extractors Choices. In the main experiment, we use Transformer as the feature extractor.
However, our method can plug in any structures of extractor. In Tab. 6, we provide experiments
using RNN or MLP as the extractor structures and implement them into strong baselines. For both
structures, ILEAHE provides good performance and can approach the joint paradigm. It supports
that ILEAHE does not rely on the adopted feature extractor (e.g., Transformer) to achieve better
performance than baselines.

4.6 Hyper-parameter Sensitiveness
The major hyperparameters for ILEAHE are 𝛼 in Eq. (7), 𝛾 in Eq. (12), and 𝛽1, 𝛽2 in Eq. (13). As
shown in Fig. 7, we study the parameter sensitivity of ILEAHE-LwF and ILEAHE-EWC on shrutime.
Overall, compared with ILEAHE-EWC, ILEAHE-LwF is more sensitive to hyper-parameters.
• 𝛼 controls the weight of prediction from shared part. Empirically, 𝛼 is preferred to be smaller
than 0.5. That is because the shared part usually faces forgetting problem. High weight for the
shared part may be inferior to the domain-specific part after increments. This can be observed
on both ILEAHE-LwF and ILEAHE-EWC.

• 𝛽1 controls the weight of 𝐿𝑜 . For 𝐿𝑜𝐿𝑤𝐹
, 𝛽1 tends to be small, otherwise the model may bias towards

old data. 𝐿𝑜
𝐸𝑊𝐶

is not sensitive to 𝛽1 because it leaves space for learning new data.
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Fig. 8. Visualization of shared and specific features from ILEAHE-EWC. The shared features are in blue and
specific features are in red.

• 𝛽2 affects the weight of 𝐿𝐷𝑖𝑠 . The selection is subject to datasets, as the discriminabilities of 𝜃𝑠𝑝
vary with datasets. ILEAHE-LwF is sensitive to 𝛽2, because large 𝛽2 harms the optimization of
𝐿𝑜
𝐿𝑤𝐹

, while small 𝛽2 defects 𝐿𝐷𝑖𝑠 . ILEAHE-EWC is stable, again for the elasticity of 𝐿𝑜
𝐸𝑊𝐶

towards
new data set.

• 𝛾 lifts the impact from discriminability score 𝑠 to 𝐿𝐷𝑖𝑠 . In our observation, two models are robust
to 𝛾 . Because 𝑠 exponentially affects 𝐿𝐷𝑖𝑠 , the effect from 𝛾 becomes subtle when 𝑠 is large. And
this process is independent of 𝐿𝑜 .

4.7 Visualization
ILEAHE adopts two kinds of feature extractors to extract the shared features across datasets and
domain-specific features for each dataset. To check whether the extracted features are shared or
domain-specific, we plot the features extracted by 𝜃𝑠 and 𝜃𝑠𝑝 in Fig. 8 based on t-SNE [46]. It can
be seen that the shared features (blue ones) gather together and separate from the specific ones
(red ones). This supports that, in heterogeneous spaces, 𝜃𝑠 and 𝜃𝑠𝑝 can handle the shared and
domain-specific parts correspondingly.

5 CONCLUSION
In this paper, we proposes a novel incremental tabular learning framework ILEAHE that deals with
the Catastrophic Forgetting problem on the heterogeneous feature space. ILEAHE extracts shared
features and domain-specific features separately from each data set, where shared features are
effective in all data sets and domain-specific features are especially effective in the corresponding
data sets. It can significantly avoid forgetting by heterogeneously describing the feature spaces
of each data sets during increments. At each increment, ILEAHE maintains the performance of
the shared feature extractor for old data sets through regularization loss. To enhance the specific
feature extractors, ILEAHE introduces the discriminability score to examine and improve their
special effectiveness. ILEAHE empirically demonstrates its effectiveness and efficiency compared
with baselines. For the future works, one direction worth trying is to adapt incremental learning to
graph representation learning [24, 49], especially the scenario of knowledge graphs [9, 10].
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