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ABSTRACT
Recently, themessage passing neural network (MPNN) has attracted
a lot of attention, which learns node representations based on the
receptive field of the given node. Despite its success in many graph-
related tasks, recent studies find that conventional MPNNs are
incapable of handling variant receptive fields required in different
graphs, and thereby some upgraded MPNNs have been developed.
However, these methods are limited to designing a common so-
lution for different graphs, which fails to capture the impact of
different graph properties on the receptive fields. To alleviate such
issues, we propose a novel MPNN space for data-dependent recep-
tive fields (MpnnDRF), which enables us to dynamically design
suitable MPNNs to capture the receptive field for the given graph.
More concretely, we systemically investigate the capability of exist-
ing designs and propose several key design dimensions to improve
them. Then, to fully explore the proposed designs and useful designs
in existing works, we propose a novel search space to incorporate
them and formulate a search framework. In the empirical study,
the proposed MpnnDRF shows very strong robustness against the
increased receptive field, which allows MpnnDRF to learn node rep-
resentations based on a larger perceptual field. Therefore, MpnnDRF
consistently achieves outstanding performance on benchmark node
and graph classification tasks.

CCS CONCEPTS
• Computing methodologies → Knowledge representation
and reasoning; • Networks → Network design principles.
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1 INTRODUCTION
As one of the most ubiquitous data structures, graph is adopted to
model various complex real-world systems, e.g., recommendation
systems [25, 37], physical systems [54], biochemical networks [20],
and knowledge graphs [12, 28]. To handle different graph scenar-
ios, graph representation learning encodes the graph into the low
dimensional vector space, which has shown promising results on
various graph tasks, e.g., node classification [30], link prediction
[76], and graph classification [72]. Recently, message passing neural
networks (MPNNs) [1, 11, 23, 24, 30, 31, 38, 50, 63, 70, 72, 73] have
become the leading approaches on graph representation learning.
MPNNs iteratively aggregate and transform messages from neigh-
bors to update node representations. Conventional MPNNs rely on
receptive field of given node to gather information for representa-
tion learning. Given one target node, the receptive field denotes a
set of nodes in the graph which influence the final representation
of the given node. Generally, the receptive field is affected by two
factors: 1) the mechanism of how receptive field expands at each
iteration(layer), 2) how many iterations 𝐾 of expansion are needed.
Fig. 1 illustrates an example that 1ℎ𝑜𝑝 mechanism with 2 layers.

Despite the success, general MPNNs may be incapable of han-
dling variant receptive fields required in different graph data sets.
First, various graphs may require different MPNN layers 𝐾 for ap-
propriate receptive field size. For those graphs with low density
(e.g., biological molecule), the receptive field expand slowly. Thus,
deep layers (large 𝐾 ) can help MPNNs gather sufficient information
from the 𝐾-hop neighbors of target nodes. But MPNNs with deep
layers may make the node representations indistinguishable (a.k.a.
over-smoothing issue [40, 42, 47, 73]) on dense graphs (e.g., social
networks). Instead, shallow MPNN layers will be more suitable for
dense cases. Second, various graphs may require different MPNN
mechanisms to achieve more descriptive receptive field. On some
homophily graphs where features or labels of nodes tend to be
similar (e.g., citation and social networks), the 1ℎ𝑜𝑝 mechanism in
conventional MPNNs is reasonable, because using local surround-
ing regions as receptive field is informative enough for center node.
On the contrary, for those heterophily graphs where features or
labels of nodes tend to be dissimilar (e.g., protein networks), a much
larger receptive field is needed in the 1ℎ𝑜𝑝 mechanism to aware in-
formation from distant nodes. But it may cause the over-squashing
issue [2, 62] that useful messages from distant nodes are severely
distorted due to the exponentially expanded size of receptive field.

Recent works explore some of these issues and propose solutions.
Node-adaptive MPNNs [42, 78, 80] observe inconsistent receptive
field expansion speeds and smoothing levels within one graph
caused by diverse node local patterns and substructures. To alle-
viate over-smoothing, they adopt different layers for each node
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Figure 1: The illustration to MPNN and receptive field.

to better suit their actual demands of receptive fields. Decoupled
MPNNs [6, 8, 31, 42, 53, 58, 70, 78] propose that deep layers and
large receptive fields may not necessarily cause over-smoothing.
Instead, they argue the coupled relationship between aggregation
and transformation. Thus, they develop decoupled approaches to
combine shallow transformation layers with deep aggregation lay-
ers. Moreover, attentive methods [3, 4, 16, 17, 34, 45, 63, 65] design
weighed receptive field that better balance node importance. Graph
re-wiring approaches [2, 34, 43, 50, 59, 62, 66, 83] go beyond the
conventional 1ℎ𝑜𝑝 mechanism for better receptive field.

Although these works alleviate inconsistent receptive field re-
quirements in different graph data sets, there are still some obvious
problems exist. First, existing works cannot consider the impact
of different graph properties on receptive field in a balanced way.
For example, some works are designed to handle over-smoothing,
but we conclude that they may only work on the homophily graph
due to over-squashing through empirical study (see Sec. 3.2). In
other words, many works often focus on tackling one issue while
ignoring other problems. Second, the designs of mainstream so-
lutions to heterophily scenarios or over-squashing can be further
improved. For instance, multi-channel MPNNs still partially rely
on the 1ℎ𝑜𝑝 neighbor mechanism to aggregate information, which
may be harmful in some cases (see more in Sec. 3.2). Besides, how
to learn from different channels in multi-channel MPNNs also re-
quires carefully design. Fully-connected MPNNs raise the concern
of higher model complexities. Moreover, many of them still follow
the coupled way to aggregate and transform information. But such
coupled design has been demonstrated unnecessary and may even
hinder performances [31, 42, 70]. Third, these works attempt to
provide a common solution for different graph data sets, which
makes them inflexible. As we discussed, various graphs may re-
quire different mechanisms to achieve better receptive field. Using
one system cannot fully deal with complex situations. For example,
small-range receptive field is more suitable for dense or homophily
cases. What if we face a dense but heterophily graph?

To further improve MPNNs’ capacity to capture receptive field
in different graphs, we propose a novel MPNN space for better
capturing Data-dependent Receptive Fields (MpnnDRF) in this
paper. Specifically, we first survey existing solutions to capture
receptive fields in different graphs and systemically investigate
their capability in various scenarios. Then, we propose several
concrete designs to improve existing solutions, including absolute
PE/SE-based re-wiring for neighbor mechanism, and relative PE/SE-
based attention for weighted receptive field. To fully explore and
utilize useful designs in existing works and the proposed ones,
we incorporate them into a search space and formulate a search
framework, which can search suitable MPNN models to capture
the receptive field for the given data. The main contributions are
summarized as follows:

Table 1: A summary of notations.
Notation Definition
R𝑑 𝑑-dimension real space.
| · |, ∥ · ∥ Length of a set, and 𝑙2-norm.
𝐺 = (𝑉 , 𝐸,A,X, P) A graph with node set 𝑉 and edge set

𝐸, where |𝑉 | = 𝑛 and |𝐸 | =𝑚.
A ∈ R𝑛×𝑛 The adjacency matrix of 𝐺 , where

A[𝑢, 𝑣] = 1 if edge (𝑢, 𝑣) ∈ 𝐸.
X ∈ R𝑛×𝑓 The matrix of node attributes, and X𝑣 ∈

R𝑓 is the attribute vector of node 𝑣 .
P ∈ R𝑛×𝑓𝑝𝑒 Matrix of node positional encodings.
D=𝑑𝑖𝑎𝑔(𝑑1,· · · ,𝑑𝑛) The diagonal degree matrix of A.
𝑁 (𝑣) Neighbor set 𝑁 (𝑣)= {𝑢 ∈𝑉 | (𝑢, 𝑣) ∈𝐸}.
L = UΛU𝑇 ∈ R𝑛×𝑛 Laplacian decomposition of 𝐺 .
RW = AD−1 ∈ R𝑛×𝑛 Random walk matrix of 𝐺 .
H𝑘 ∈R𝑛×𝑑 ,H𝑘𝑣 ∈R𝑑 The node representation at layer 𝑘 .
· Vector dot product.
| | Concatenation operator.
𝜎 (·) Non-linear activation function (ReLU).
𝑡𝑎𝑛ℎ(·) Hyperbolic tangent activation function.

• We systematically revealed the connection between design di-
mensions with receptive fields on existing benchmark graph data
sets. We develop a novel metric to measure over-squashing and
leverage it to investigate existing works with empirical study.

• To better capture receptive fields, we propose two novel designs
to improve existing neighbor and weighted receptive field mech-
anisms, which enable the model to deal with diverse graphs.

• To fully explore existing designs, we implement various design
dimensions into one novel MPNN space and bridge the gap be-
tween existing AutoMPNNs with the cognition of receptive field.

• Empirical study verifies MpnnDRF is robust to increased re-
ceptive field size and less vulnerable to common issues (over-
smoothing and over-squashing) in terms of receptive field. On
node and graph classification task, MpnnDRF consistently beats
baselines across benchmark data sets with diverse properties.

2 RELATEDWORK
2.1 MPNNs and Common Issues
2.1.1 General Message Passing Neural Networks (MPNNs). Follow-
ing the general message passing schema [23], MPNNs have become
the leading approaches on graph representation learning. MPNNs
iteratively update node representations H via message aggregation
from immediate (1ℎ𝑜𝑝) neighbors, and are formalized as:

M𝑘+1
𝑣 = 𝑎𝑔𝑔𝑘 (𝑚𝑠𝑔𝑘 (H𝑘𝑢 ,H𝑘𝑣 , 𝑒𝑘𝑢𝑣) |𝑢 ∈ 𝑁 (𝑣)), (1)

H𝑘+1
𝑣 = 𝑢𝑝𝑑𝑘 (𝑐𝑜𝑚𝑏𝑘 (H𝑘𝑣 ,M𝑘+1

𝑣 )), (2)
whereH0

𝑣 = X𝑣 ;𝑘 ∈ {0, 1, . . . , 𝐾} is the currentMPNN layer/iteration;
𝑒𝑘𝑢𝑣 is the weight for edge (𝑢, 𝑣);𝑚𝑠𝑔𝑘 (·) is the message function
that computes messages; 𝑎𝑔𝑔𝑘 (·) is the aggregation function that
gathers messages from 1ℎ𝑜𝑝 neighbors 𝑁 (𝑣) = {𝑢 ∈ 𝑉 | (𝑢, 𝑣) ∈ 𝐸}
to induce immediate representation M𝑘+1

𝑣 ; 𝑐𝑜𝑚𝑏𝑘 (·) function com-
bines neighbors’ information with node itself, which is then fed
into update function 𝑢𝑝𝑑𝑘 (·) (general non-linear) to obtain H𝑘+1

𝑣 .
After each iteration, receptive field of node 𝑣 is enlarged as:

N𝑘+1 (𝑣) = N𝑘 (𝑣) ∪ {𝑢 ∈ 𝑉 |A[𝑤,𝑢] = 1 ∩𝑤 ∈ N𝑘 (𝑣)}. (3)
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(a) Sparse. (b) Dense. (c) Homophily. (d) Heterophily.
Figure 2: Graphs with different densities. Graphs with homophily/heterophily patterns.

After 𝐾-th iterations, MPNNs yield learned representations H𝑣 =
H𝐾𝑣 . For node-set learning tasks, a permutation-invariant readout
function 𝑟𝑒𝑎𝑑 (·) is further required to induce high-order represen-
tations. E.g., for graph classification, 𝑟𝑒𝑎𝑑 (·) maps R𝑛×𝑑 → R𝑑 .

Different MPNNs mainly differ from each other in terms of main
components in Eq. (1) and (2). E.g., GCN [30] instantiates Eq. (1)
and (2) as follows, with W𝑘 as trainable transformation matrix.

M𝑘+1
𝑣 =

∑︁
𝑢∈𝑁̃ (𝑣) H𝑘𝑢/

√︃
𝑑𝑢𝑑𝑣, H𝑘+1

𝑣 = 𝜎 (W𝑘M𝑘+1
𝑣 ). (4)

2.1.2 Common issues of general MPNNs in terms of receptive field.
As discussed in Sec. 1, general MPNNs may be incapable of han-
dling variant receptive fields required in different graph scenarios.
For example, dense/homophilic graphs may be vulnerable to over-
smoothing, where node representations converge to stationary dis-
tribution and become indistinguishable. Heterophilic graphs may
encounter another prominent issue, i.e., over-squashing, referring
to MPNNs’ inability to propagate distant messages due to the bot-
tleneck originating from original graph topology [2, 62]. Although
both over-smoothing and -squashing are arguably caused by the
failure of given node’s learned representation being affected by
other key nodes and hinder MPNN results, they are generally more
relevant to short-range and long-range (range means interaction
hop between nodes) graph scenarios respectively [2]).
DecoupledMPNNs (DMPNNs). EarlyMPNNs follow coupled way
to integrate non-linear feature transformation𝑢𝑝𝑑 (·) with topology
aggregation 𝑎𝑔𝑔(·) (Eq. (1) and (2)). However, recent works chal-
lenge the necessity of such coupled designs from the view of model
performance (e.g., over-smoothing) and efficiency, especially for
deeper models. Thus, they propose Decoupled MPNNs (DMPNNs)
[8, 31, 42, 53, 70, 79] as solutions. As a representative, APPNP [31]
is formulated as Eq. (5), where 𝑓𝜃 (·) is parametric update function
and 𝛽 ∈ [0, 1] is teleport probability to preserve locality.

H0
𝑣 = 𝑓𝜃 (X𝑣), H𝑘+1

𝑣 = 𝛽H0
𝑣 + (1 − 𝛽)

∑︁
𝑢∈𝑁̃ (𝑣) H𝑘𝑢/

√︃
𝑑𝑢𝑑𝑣 . (5)

Non-localMPNNs.To alleviate potential issues (e.g., over-squashing)
and better capture receptive fields, non-local mechanisms have been
developed recently, e.g., high-order MPNNs [1, 8, 11, 53, 70, 83],
geometric MPNNs [50], fully-connected MPNNs [2], and Graph
Transformers [16, 34, 45].

2.2 Automated MPNNs
Despite success, general (manual) MPNNs are limited to fixed mes-
sage passing mechanism for all graphs and may lead to data-aware
issue, i.e., graph with different properties may require different
MPNN mechanisms for better graph representation learning.

To tackle this, Automated Message Passing Neural Networks
(AutoMPNNs) [22, 67, 68, 79] have been recently developed. Gener-
ally, AutoMPNNs focus on searching key functions in Eq. (1) and

(2) (e.g., 𝑎𝑔𝑔𝑘 (·)) to build optimal MPNN structure for given graph
data. Specifically, AutoMPNNs construct operator search space O
for these functions (design dimensions) and propose candidate-sets
(design choices) accordingly. For simple illustration (we refer read-
ers to [81] for comprehensive survey), we list some common design
choices:O𝑁 = {𝑓 𝑖𝑟𝑠𝑡_𝑜𝑟𝑑𝑒𝑟 },O𝑒 = {𝑛𝑜𝑛_𝑛𝑜𝑟𝑚, 𝑠𝑦𝑠_𝑛𝑜𝑟𝑚, 𝑟𝑤_𝑛𝑜𝑟𝑚},
O𝑚𝑠𝑔 = {𝑒𝑢𝑣H𝑢 },O𝑎𝑔𝑔 = {𝑠𝑢𝑚,𝑚𝑒𝑎𝑛,𝑚𝑎𝑥,𝑚𝑖𝑛},O𝑐𝑜𝑚𝑏 = {𝑠𝑢𝑚, 𝑐𝑜𝑛𝑐𝑎𝑡},
and O𝑢𝑝𝑑 = {𝑅𝑒𝐿𝑈 (W), 𝑃𝑅𝑒𝐿𝑈 (W)}. Then, various search algo-
rithms (e.g., differentiable [41, 71]) can be used to search the optimal
MPNN from defined O. However, existing AutoMPNNs neglect im-
portant design dimensions for receptive field, and thus may be
incapable to handle diverse receptive fields required in different
graphs and vulnerable to common issues, e.g., over-smooth and
-squashing.

3 METHODOLOGY
In Sec. 3.1, we first introduce our proposed novel quantitative metric
to access over-squashing. In Sec. 3.2, we present several motiva-
tional experiments to support the arguments in Sec. 1. Then, moti-
vated by those experiments, we propose a comprehensive space in
Sec. 3.3 to cover both existing design dimensions and some designs
improved by us. Finally, in Sec. 3.4, we formulate a search problem
and propose to search a suitable MPNN model for the given graph.

3.1 The Proposed Metric for Over-squashing
As mentioned in Sec. 2.1.2, over-smoothing and -squashing are
common issues of general MPNNs in terms of receptive field. While
over-smoothing is more extensively explored with various quan-
titative metrics being developed, e.g., 𝑀𝐴𝐷 [7] (see Appx. A.1),
over-squashing is less studied with few metrics on hand. [62] pro-
poses Jacobian 𝐼 (𝑣,𝑢) (see Appx. A.1) to access over-squashing
effect for individual nodes. Unfortunately, unlike 𝑀𝐴𝐷 as a graph-
level (global) metric, 𝐼 (𝑣,𝑢) is intrinsically a node-level (local) one,
making it difficult to quantify the overall over-squashing degree of
the entire graph given certain MPNN designs.

To bridge this gap, we develop a novel graph-level quantitative
metric 𝐼𝐺𝑟𝑜𝑢𝑝 ∈ [0, 1] for graph 𝐺 built on existing 𝐼 (𝑣,𝑢):

𝐼𝐺𝑟𝑜𝑢𝑝 =

∑
𝑢,𝑣∈𝑉∧𝑦𝑢=𝑦𝑣 𝐼𝐺 [𝑣,𝑢]∑

𝑢,𝑣∈𝑉 𝐼𝐺 [𝑢, 𝑣] =

∑
𝑣∈𝑉

∑
𝑢∈𝑉∧𝑦𝑢=𝑦𝑣 𝐼𝑣 [𝑢]

𝑛
, (6)

where 𝐼𝐺 = [𝐼𝑣1 , 𝐼𝑣2 , . . . , 𝐼𝑣𝑛 ] ∈ R𝑛×𝑛 is the matrix that collects influ-
ence distributions 𝐼𝑣 ∈ R𝑛 for 𝑣 ∈ 𝑉 , and 𝐼𝑣 [𝑢] = 𝐼 (𝑣,𝑢)/

∑
𝑧∈𝑉 𝐼 (𝑣, 𝑧).

𝐼𝐺𝑟𝑜𝑢𝑝 measures the average proportion of influence from intra-
class messages against all (intra-class as well as inter-class) mes-
sages based on the induced receptive field of specific MPNN design.

3.2 Empirical Observation of Existing MPNNs
3.2.1 Experimental settings. As discussed in Sec. 1 and Sec. 2.1,
MPNNs rely on the receptive field to aggregate information for
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(a) Citeseer (b) Pubmed (c) Cornell (d) Wisconsin

Figure 3: Empirical results (test accuracy, quantitative𝑀𝐴𝐷 and 𝐼𝐺𝑟𝑜𝑢𝑝 ) of several advanced MPNNs.
node representation learning. There are two main differences in
how to capture receptive fields in existing works: 1) how recep-
tive field expands at each iteration/layer; 2) how many expansion
iterations 𝐾 are required. The majority of existing works rely on
1ℎ𝑜𝑝 mechanism to expand receptive field (i.e., iteratively aggre-
gate 1ℎ𝑜𝑝 neighbors based on original graph connectivity A) since
they assume A is highly informative for representation learning.
Early methods usually set small 𝐾 since large 𝐾 would lead to over-
sized receptive field, raising risks of performance collapse due to
over-smoothing. Some later improvements (e.g., DMPNN; MPNN
with adaptive layers) propose new MPNN designs and try larger
receptive field for more information and higher performances.

To explore some classic MPNNs, we utilize common benchmarks
of node classification for evaluation: Citeseer, PubMed, Cornell,
and Wisconsin (statistics in Tab. 7). Citeseer and PubMed are ho-
mophily graphs while the rest are heterophily ones (ℎ𝑜𝑚𝑜. 𝑟𝑎𝑡𝑖𝑜 =
| (𝑢,𝑣) :(𝑢,𝑣) ∈𝐸∧𝑦𝑢=𝑦𝑣 |

|𝐸 | ∈ [0, 1], 𝑦𝑣 is label for node 𝑣). Adopted 1ℎ𝑜𝑝
methods (except for MLP that are 0ℎ𝑜𝑝) are as follows, which are
different in terms of: 1) coupled/decoupled for aggregation and
transformation, 2) mechanism (𝑖𝑛𝑡𝑒𝑟_𝑎𝑔𝑔) to fuse multi-scale infor-
mation from different range of receptive fields (iterations/layers).

• MLP: no aggregation (only transformation), no 𝑖𝑛𝑡𝑒𝑟_𝑎𝑔𝑔;
• GCN, SAGE: coupled, no 𝑖𝑛𝑡𝑒𝑟_𝑎𝑔𝑔;
• GCN_JK_cat, SAGE_JK_cat: coupled, non-adaptive 𝑖𝑛𝑡𝑒𝑟_𝑎𝑔𝑔;
• GCN_JK_max, SAGE_JK_max: coupled, node-adaptive 𝑖𝑛𝑡𝑒𝑟_𝑎𝑔𝑔;
coupled MPNN and layer-adaptive;

• DAGNN: decoupled, node-adaptive 𝑖𝑛𝑡𝑒𝑟_𝑎𝑔𝑔;
• APPNP with different teleport probability 𝛽 ∈ {0.2, 0.4, 0.6, 0.8}
(see Eq. (5)): decoupled, non-adaptive 𝑖𝑛𝑡𝑒𝑟_𝑎𝑔𝑔.

3.2.2 Observations and analysis. Empirical results under variant 𝐾
(2-10 as in x-axis) are shown in Fig. 3. Note that 𝐾 means maximum
allowed layers for adaptive works, and 𝐾 is fixed in other works.

From Fig. 3(a) and 3(b), we first observe that performance col-
lapse occurs for MLP, GCN and SAGE as layer increases. For GCN
and SAGE, this is because the increased layers will lead to a larger
receptive field, which will make the node representations diffi-
cult to distinguish (small𝑀𝐴𝐷 and over-smoothing). However, for
(0ℎ𝑜𝑝) MLP that only contains the given node itself within the
receptive field no matter 𝐾 settings, it just works as feature trans-
formation and the performance collapse cannot be attributed to
over-smoothing. Instead, it may be caused by the vanishing gra-
dient problem or training difficulty of deeper NNs. This indicates
that deep layers of feature transformation may also deteriorate
performances. Despite techniques in other more advanced MPNNs
(e.g., decoupled schema and adaptive layers) are different, their
performance is robust to different 𝐾 settings (2-10). Besides, we ob-
tain a high Pearson correlation coefficient [10] (0.59-0.67) between
𝑀𝐴𝐷 and test performance for them. This may indicate that their
efforts in terms of receptive field designs (e.g., decoupled schema
and adaptive layers) empower them to alleviate over-smoothing,
thereby achieve superior and robust performances when dealing
with homophily graphs.

From Fig. 3(c) and 3(d), however, we observe significantly differ-
ent patterns. Specifically, we notice that these advanced MPNNs
perform less robust, and their advantages over GCN and SAGE
become less significant compared with Fig. 3(a) and 3(b). This may
indicate their inability on heterophily graphs. To seek for poten-
tial explanations, we take a further look at values of quantitative
𝑀𝐴𝐷 and 𝐼𝐺𝑟𝑜𝑢𝑝 . We find that on Cornell, and Wisconsin, adopted
(1hop) MPNNs lead to a wide spectrum of 𝑀𝐴𝐷 (0.10-0.60) but
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consistently low 𝐼𝐺𝑟𝑜𝑢𝑝 (0.16-0.21). This may indicate their infe-
rior results are more originated from over-squashing rather than
over-smoothing. We further conjecture that the inadequate 1ℎ𝑜𝑝
mechanism may be the root cause. One supporting finding for this
hypothesis is that, the simplest (0ℎ𝑜𝑝) MLP achieves surprisingly
better and robust results than other (1ℎ𝑜𝑝) counterparts. To further
verify, we then set simple variants in terms of neighbor mechanism:
classic GCN aggregation coped with 1ℎ𝑜𝑝 , 2ℎ𝑜𝑝 , and 𝑘𝑛𝑛 neigh-
bor mechanism (1ℎ𝑜𝑝 setting recovers the vanilla GCN) that are
popular in some latest works [29, 83]. From Fig 4 (Appx.), we now
obtain a high Pearson correlation coefficient (0.54-0.77) between
𝐼𝐺𝑟𝑜𝑢𝑝 and test accuracy. Besides, 2ℎ𝑜𝑝 and 𝑘𝑛𝑛 outperform classic
1ℎ𝑜𝑝 probably due to their capacity to alleviate over-squashing
(large 𝐼𝐺𝑟𝑜𝑢𝑝 ). However, such superiority diminishes as 𝐾 increases
(2->10), indicating the occurrence of over-smoothing. Coping with
simple 𝑖𝑛𝑡𝑒𝑟_𝑎𝑔𝑔 helps retain their advantages even with larger
𝐾 . Additionally, even within one model, optimal settings may also
differ across datasets. For instance, APPNP with 𝛽 ∈ {0.2, 0.4} are
better in Fig. 3(a) and 3(b), while APPNP with 𝛽 ∈ {0.6, 0.8} are
more suitable in Fig. 3(c) and 3(d).

To summarize, we verify our key arguments in Sec. 1 via empir-
ical observations. We thus conclude that a more comprehensive,
powerful, and flexible framework for receptive field designs is much
desired so as to deal with complex graph scenarios.

3.3 The Space of Design Dimensions for
Capturing Receptive Field

In Sec. 3.2, we observe that various models perform differently on
different graph sets. We assume that this is caused by different
specific designs of the model. Therefore, in this subsection, we first
study different model designs in MPNNs for capturing the receptive
field. Then, we propose specific designs to improve them. Finally,
we summarize the proposed designs and form a search space.

Similar to Eq. (1) and (2), we first summarize the MPNN frame-
work finally adopted in this paper as Eq. (7), (8), and (9). Note that
classic MPNNs mainly focus on how to design specific operators
within one layer, i.e., intra-layer designs. But some recent study
[42] show that designing connectivity between different layers can
effectively deepen the MPNNs layers and alleviate over-smoothing.
Therefore, we also include inter-layer designs as follows:
𝑃𝑟𝑒−𝑀𝑃𝑁𝑁 : H0

𝑣 = 𝑓𝜃 (X𝑣), (7)

𝐼𝑛𝑡𝑟𝑎−𝑙𝑎𝑦𝑒𝑟 :
{

M𝑘+1
𝑣 = 𝑖𝑛𝑡𝑟𝑎_𝑎𝑔𝑔𝑘 (𝑒𝑘𝑢𝑣H𝑘𝑢 |𝑢 ∈ 𝑁𝑘 (𝑣)),

H𝑘+1
𝑣 = 𝑢𝑝𝑑𝑎𝑡𝑒𝑘 (𝑐𝑜𝑚𝑏𝑘 (H𝑘𝑣 ,M𝑘+1

𝑣 )), (8)

𝐼𝑛𝑡𝑒𝑟−𝑙𝑎𝑦𝑒𝑟 : H𝑣 = 𝑖𝑛𝑡𝑒𝑟_𝑎𝑔𝑔(H0
𝑣, . . . ,H

𝐾
𝑣 ) . (9)

In this paper, we identify that the choices of 𝑁𝑘 (𝑣), and 𝑒𝑘𝑢𝑣 are
important to MPNNs to capture the data-specific properties for the
receptive field. Therefore, we will focus on explaining existing de-
signs of them and how to improve them. As for other design dimen-
sions, we follow the common space as introduced in Sec. 2.2, such as
O𝑖𝑛𝑡𝑟𝑎_𝑎𝑔𝑔 ∈ {𝑠𝑢𝑚,𝑚𝑒𝑎𝑛,𝑚𝑎𝑥,𝑚𝑖𝑛} and O𝑐𝑜𝑚𝑏 ∈ {𝑠𝑢𝑚, 𝑐𝑜𝑛𝑐𝑎𝑡}.

3.3.1 Transformation. Motivated by Sec. 3.2, we found that the
recently developed decoupled MPNNs (e.g., DAGNN and APPNP)
achieve good performance on a wide range of graph data sets with
different properties. Thus, we include it in Eq. (7). We follow the

Table 2: Receptive field size under two-hop setting: naive
(without pruning) method and MpnnDRF (with pruning).
Property Acto. Corn. Texa. Wisc. Cite. PubM. DBLP CS
Naive 1279966 4949 5973 8539 22410 562892 738306 985910

MpnnDRF 62806 221 287 557 4737 86184 164724 228780
ratio 4.9% 4.5% 4.8% 6.5% 21.1% 15.3% 22.3% 23.2%

common practice in DMPNNs to instantiate 𝑓𝜃 (·) as the MLP model.
More specifically, based on empirical observations in Fig. ?? and
Sec. 3.2 that deep layers of feature transformation may deteriorate
performances, we set the layers of MLP as 2.

3.3.2 Neighbors mechanism 𝑁𝑘 (𝑣). As discussed in Sec. 1 and
Sec. 2.1, conventional MPNNs directly aggregate messages from the
first-order (1ℎ𝑜𝑝) neighbors 𝑁 (𝑣) = {𝑢 ∈ 𝑉 |A[𝑢, 𝑣] = 1} (Eq. (1)).

High-order neighbors. To exploit high-order (𝑙ℎ𝑜𝑝) neighbors,
some works [1, 8, 11, 29, 53, 70, 82, 83] go beyond the first-order
restriction to better capture long-range dependencies:

𝑁𝑘 (𝑣) = {𝑢 ∈ 𝑉 |A𝑙 [𝑢, 𝑣] = 1}. (10)
However, this may result in an exponentially large neighborhood
size and increase computational cost. Thus, we leverage pruning
strategy as in Eq. (11) and constraint 𝑙 ≤ 2 to alleviate it. As shown
in Tab. 2, MpnnDRF’s pruning method significantly reduces the
exponential issue when leveraging high-order neighbors.

𝑁𝑘 (𝑣) = {𝑢 ∈ 𝑉 |A𝑙 [𝑢, 𝑣] ≥ 𝑙}. (11)
Re-wiring neighbors. The first/high-order neighbor mecha-

nisms still follow the original graph connectivity A to aggregate
neighbors. Instead, some works propose to re-wire A into Â to
denoise the graphs (i.e., revising A[𝑢, 𝑣] = 1 to 0) and ease the
message flow between distant nodes [32, 45] (revising A[𝑢, 𝑣] = 0
to 1 where 𝑢 and 𝑣 are distant in the original graph).

Because changing the original connectivity may greatly dis-
tort the information of the graph, different methods adopt differ-
ent strategies to modify the connectivity of the graph, including
diffusion-based (personalized PageRank [48] and heat-kernel [33])
and attribute-based re-wiring methods. The main idea of their meth-
ods is to learn a similarity matrix S ∈ R𝑛×𝑛 for any node pairs in
the graph. In diffusion-based re-wiring methods, S𝑔𝑑𝑐 is defined as:

S𝑔𝑑𝑐 =
∞∑︁
𝑙=0

𝑤𝑙A
𝑙 , (12)

where𝑤𝑙 defines coefficient based on PPR 𝑔𝑑𝑐_𝑝𝑝𝑟 and heat-kernel
𝑔𝑑𝑐_ℎ𝑒𝑎𝑡 . 𝛽 is teleport probability, and 𝑡 is diffusion time.

𝑤𝑙 =


𝛽 (1 − 𝛽)𝑙 , 𝑔𝑑𝑐_𝑝𝑝𝑟,

𝑒−𝑡
𝑡𝑙

𝑙 !
, 𝑔𝑑𝑐_ℎ𝑒𝑎𝑡,

(13)

Different from above methods relying on graph connectivity,
attribute-based re-wiring methods argue that the graph connectiv-
ity may exhibit limited informativeness [29, 66]. Thus, they propose
to reconstruct the graph based on similarity of node attributes:

S𝑎𝑡𝑡𝑟 [𝑢, 𝑣] = 𝑠𝑖𝑚(X𝑢 ,X𝑣), (14)
where Cosine similarity can be employed as the similarity matrix
𝑠𝑖𝑚(·). However, the graph may be too dense if we derive the graph
connectivity based on S𝑔𝑑𝑐 and S𝑎𝑡𝑡𝑟 . Thus, 𝑘NN [29, 32, 66] is
further applied on S𝑔𝑑𝑐 and S𝑎𝑡𝑡𝑟 to build the graph connectiv-
ity. Taking S𝑔𝑑𝑐 as an example, the derivation of connectivity and
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Table 3: Search space of MpnnDRF: design dimensions and candidate-sets.
Type Design dimension Candidate-set O

Pre-MPNN Transformation 𝑓𝜃 O𝑓𝜃 = {𝑀𝐿𝑃}

Intra-layer

Neighbor mechanism 𝑁𝑘 (𝑣) O𝑁 = {𝑓 𝑖𝑟𝑠𝑡_𝑜𝑟𝑑𝑒𝑟, ℎ𝑖𝑔ℎ_𝑜𝑟𝑑𝑒𝑟, 𝑎𝑡𝑡𝑟_𝑟𝑒𝑤𝑖𝑟𝑒, 𝑑𝑖 𝑓 𝑓 𝑢𝑠𝑒_𝑟𝑒𝑤𝑖𝑟𝑒, 𝑃𝐸/𝑆𝐸_𝑟𝑒𝑤𝑖𝑟𝑒}
Edge weight e𝑘𝑢𝑣 O𝑒 = {𝑛𝑜𝑛_𝑛𝑜𝑟𝑚, 𝑠𝑦𝑠_𝑛𝑜𝑟𝑚, 𝑟𝑤_𝑛𝑜𝑟𝑚, 𝑠𝑒𝑙 𝑓 _𝑔𝑎𝑡𝑖𝑛𝑔, 𝑟𝑒𝑙_𝑙𝑒𝑝𝑒, 𝑟𝑒𝑙_𝑟𝑤𝑝𝑒}
Intra aggregation 𝑖𝑛𝑡𝑟𝑎_𝑎𝑔𝑔𝑘 O𝑖𝑛𝑡𝑟𝑎_𝑎𝑔𝑔 = {𝑠𝑢𝑚,𝑚𝑒𝑎𝑛,𝑚𝑎𝑥,𝑚𝑖𝑛}
Combination 𝑐𝑜𝑚𝑏𝑘 O𝑐𝑜𝑚𝑏 = {𝑠𝑢𝑚, 𝑐𝑜𝑛𝑐𝑎𝑡}

Inter-layer Inter aggregation 𝑖𝑛𝑡𝑒𝑟_𝑎𝑔𝑔 O𝑖𝑛𝑡𝑒𝑟_𝑎𝑔𝑔 = {𝑐𝑜𝑛𝑐𝑎𝑡, 𝑙𝑎𝑠𝑡,𝑚𝑒𝑎𝑛,𝑑𝑒𝑐𝑎𝑦,𝑔𝑝𝑟, 𝑙𝑠𝑡𝑚_𝑎𝑡𝑡, 𝑔𝑎𝑡𝑖𝑛𝑔}

neighbors can be formed as:
A𝑔𝑑𝑐 = 𝑘NN(S𝑔𝑑𝑐 ), 𝑁𝑘 (𝑣) = {𝑢 ∈ 𝑉 |A𝑔𝑑𝑐 [𝑢, 𝑣] = 1}, (15)

where S𝑔𝑑𝑐 (dense) → A𝑔𝑑𝑐 (sparse).
However, attribute-based re-wiring methods cannot work on

non-attributed graphs, which is common among popular graph
classification data. And diffusion-based re-wiring methods may be
inappropriate when dealing with heterophilic graphs [62].

Re-wiring based on positional/structural encoding.
As discussed, existing high-order neighbor mechanism may

suffer from exponentially large neighborhood size, and existing
re-wiring mechanism may be incapable when graphs exhibit cer-
tain properties (e.g., non-attributed). To improve, we propose posi-
tional/structural encoding (PE/SE)-based re-wiring methods. PE/SE
has been shown powerful in defining MPNN directions that are
capable to counteract over-smoothing and -squashing, shorten dif-
fusion distance and improve MPNN efficiency [3]. Recently, PE/SE
has been adopted in Graph Transformers (GTs) [46] and MPNNs
[3, 65], which generally works as raw attributes or edge weights
(attentions). However, the way that existing works incorporate
PE/SE as soft inductive bias (edge weight) in GTs or 1ℎ𝑜𝑝 MPNNs
may be suboptimal, since fully-connected GTs may be costly due
to oversized receptive field, and sparse 1ℎ𝑜𝑝 MPNNs may be less
flexible due to the fixed receptive field. Inspired by existing designs,
we reason that leveraging PE/SE to re-wire neighbors under the
sparse MPNN schema may be promising to better capture receptive
field:

S𝑝𝑒 [𝑢, 𝑣] = 𝑠𝑖𝑚(P𝑢 , P𝑣) . (16)
Specifically, we leverage Laplacian eigenvector as PE since it allows
efficient message passing [3], and random-work matrix as SE [18,
39] since it demonstrates powerful to model substructures in graphs:

P𝑣 =

{
[U𝑣1,U𝑣2, . . . ] ∈ R𝑑𝑝𝑒 , 𝑙𝑒𝑝𝑒,

[RW1
𝑣𝑣,RW2

𝑣𝑣, . . . ] ∈ R𝑑𝑠𝑒 , 𝑟𝑤𝑠𝑒.
(17)

where U is the eigenvector matrix, and RW = AD−1. Then, analo-
gously as in Eq. (15), 𝑘NN is further applied to the similarity matrix
S𝑝𝑒 to build the sparse graph connectivity A𝑝𝑒 .

3.3.3 Edge Weight 𝑒𝑘𝑢𝑣 . MPNNs initially do not model the edge
weights as they are mainly designed for homogeneous graph. But
recent studies show that edge weight can control the message
passed from H𝑘𝑢 to M𝑘+1

𝑣 (see Eq. (7)), which can help control the
magnitude of messages. Here we first introduce two common de-
signs, non-parametric and attentive modelings.

Non-parametric weight. Utilizing node degree to normalize
the weight 𝑒𝑘𝑢𝑣 is widely adopted in mainstreamMPNNs [24, 30, 72],
e.g., GIN [72] directly assigns the constant weight for all messages;
GCN [30] utilizes systematic normalization; SAGE [24] normalizes
based on the random-walk process. We summarize such approaches

as Eq. (18), where 𝑑𝑢 is the degree for node 𝑢 (with self-loop).

𝑒𝑘𝑢𝑣 = 𝑓𝑒 (𝑑𝑢 , 𝑑𝑣) =


1, 𝑛𝑜𝑛_𝑛𝑜𝑟𝑚,

1/
√︃
𝑑𝑢𝑑𝑣, 𝑠𝑦𝑠_𝑛𝑜𝑟𝑚,

1/𝑑𝑢 , 𝑟𝑤_𝑛𝑜𝑟𝑚.

(18)

Attentive weight. Recent works [2] observe that MPNNs with
attention e.g., GAT [63] with self-attention, may be less susceptible
to over-squashing. Thus, we model the weight 𝑒𝑘𝑢𝑣 with representa-
tions of source and target nodes (i.e., H𝑢 and H𝑣 ) as follows:

𝑒𝑘𝑢𝑣 = 𝑓𝑒 (H𝑢 ,H𝑣) = 𝑡𝑎𝑛ℎ(g𝑇 · [H𝑘𝑢 | |H𝑘𝑣 ]), 𝑠𝑒𝑙 𝑓 _𝑔𝑎𝑡𝑖𝑛𝑔 (19)
where g ∈ R2𝑑 is the linear projection vector that to be learned;
𝑡𝑎𝑛ℎ(·) induces real valued 𝑒𝑘𝑢𝑣 ranging between [−1, 1]. Compared
against GAT which generally impose the non-negative constraint
on 𝑒𝑘𝑢𝑣 , we allow the magnitude as well as sign of message (𝑒𝑘𝑢𝑣 in
Eq. (19)) to be more adaptive, which may be more flexible to handle
high-frequency graph signals [3, 4].

PE/SE weight. Non-parametric weight that simply depends on
degree information may suffer from limited capacity, and attentive
weight cannot handle graphs when raw attributes are not available
or uninformative. Hence, analogously with proposed PE/SE-based
re-wiring, we further provide another PE/SE-based method for
better capture receptive field, i.e., we propose to leverage relative
PE/SE to control the edge weights, which may be regarded as soft
version of proposed PE/SE-based re-wiring methods:

𝑒𝑘𝑢𝑣 = 𝑓𝑒 (P𝑢 , P𝑣) = 𝜙 (∥P𝑢 − P𝑣 ∥) (20)

=

{
𝜙 (∥P𝑙𝑒𝑝𝑒𝑢 − P𝑙𝑒𝑝𝑒𝑣 ∥), 𝑟𝑒𝑙_𝑙𝑒𝑝𝑒,
𝜙 (∥P𝑟𝑤𝑠𝑒𝑢 − P𝑟𝑤𝑠𝑒𝑣 ∥), 𝑟𝑒𝑙_𝑟𝑤𝑠𝑒,

(21)

where the relative positional encoding ∥P𝑢 − P𝑣 ∥ measures the
relative distance between P𝑢 and P𝑢 and is derived via the 𝑙2-norm
∥ · ∥ (R𝑑 → R); 𝜙 is the neural network that transforms relative
PE/SE to induce scalar weight (R→ R) for the incoming message.

3.3.4 Inter-layer Receptive Field Fusion. Recent works observe that
fusing (aggregating) multi-scale information from different range of
receptive fields (layers) may be beneficial towards richer represen-
tation learning. Hence, MpnnDRF further covers such inter-layer
design dimension 𝑖𝑛𝑡𝑒𝑟_𝑎𝑔𝑔 in Eq. (9) to support the inter-layer
message passing. Motivated by the recent works [8, 31, 36, 36, 48,
53, 73, 82], the operator space of 𝑖𝑛𝑡𝑒𝑟_𝑎𝑔𝑔 in this paper is denoted
to 𝑖𝑛𝑡𝑒𝑟_𝑎𝑔𝑔 ∈ {𝑐𝑜𝑛𝑐𝑎𝑡, 𝑙𝑎𝑠𝑡,𝑚𝑒𝑎𝑛,𝑑𝑒𝑐𝑎𝑦,𝑔𝑝𝑟, 𝑙𝑠𝑡𝑚_𝑎𝑡𝑡, 𝑔𝑎𝑡𝑖𝑛𝑔}.
Next we roughly categorize them into three types from the perspec-
tive of how they aggregate information and whether the weight of
aggregate information is adaptive.

Layer-wise, non-adaptive. Layer-wise methods mainly aggre-
gate the representations of different layers to learn the represen-
tation, like 𝑖𝑛𝑡𝑒𝑟_𝑎𝑔𝑔(·) = 𝑐𝑜𝑛𝑐𝑎𝑡 (H0

𝑣, . . . ,H𝐾𝑣 ) = [H0 | | · · · | |H𝐾 ].
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And {𝑙𝑎𝑠𝑡,𝑚𝑒𝑎𝑛,𝑑𝑒𝑐𝑎𝑦} methods can be formed as weighted sum
H =

∑𝐾
𝑘=0𝑤𝑘H𝑘 , where𝑤𝑘 is defined as:

𝑤𝑘 =


𝛿𝑘𝐾 , 𝑙𝑎𝑠𝑡,

1/(𝐾 + 1), 𝑚𝑒𝑎𝑛,

𝛽 (1 − 𝛽)𝑘 , 𝑑𝑒𝑐𝑎𝑦.

(22)

In Eq. (22), 𝑙𝑎𝑠𝑡 [30, 70] completely ignores the inter-layer NMP and
directly takes representations from last layer as final output, i.e.,
𝑤𝑘 = 𝛿𝑘𝐾 , where 𝛿𝑘𝐾 = 1 if 𝑘 = 𝐾 otherwise 0;𝑚𝑒𝑎𝑛 [82] assigns
equal weights for each layer with 𝑤𝑘 = 1/(𝐾 + 1); 𝑑𝑒𝑐𝑎𝑦 [8, 31]
follows the personalized PageRank (PPR) [48], which penalizes the
importance of deeper layers to preserve locality as𝑤𝑘 = 𝛽 (1 − 𝛽)𝑘 ,
where 𝛽 ∈ [0, 1] is the teleport probability. Since the weights of
combining different layers (𝑤𝑘 ) are non-parametric, this type of
operators belong to non-adaptive ones.

Layer-wise, adaptive. In Eq. (22),𝑤𝑘 is preset based on some
prior knowledge and restricted to be non-negative. Despite the
simplicity, such methods may lead to limited flexibility. As demon-
strated in [9], the dissolution of non-negative constrain for 𝑤𝑘
brings further benefit to better tackle the low-frequency/high-
frequency aspects of graph signals simultaneously. Inspired by
it, we further allow the weights between layers to be learnable
(denoted as 𝛾𝑘 ) as: H =

∑𝐾
𝑘=0 𝛾𝑘H𝑘 , where 𝛾𝑘 is trained end-to-end

and can be both positive/negative.
Node-wise, adaptive. Recent works [73, 78, 80] observe that the

expansion speed of RF among different nodes may be inconsistent
when graph exhibits significantly heterogeneous local patterns
(e.g., sparsity). Thus, fixed 𝑖𝑛𝑡𝑒𝑟_𝑎𝑔𝑔 for all nodes may lead to the
oversized RF (with excessive irrelevant noises) for some nodes, and
the undersized RF (with insufficient messages) for others. To further
boost the flexibility of 𝑖𝑛𝑡𝑒𝑟_𝑎𝑔𝑔, node-wise adaptive candidates
{𝑙𝑠𝑡𝑚_𝑎𝑡𝑡, 𝑔𝑎𝑡𝑖𝑛𝑔} are integrated. Similar to layer-wise adaptive
methods, H𝑣 is formulated as H𝑣 =

∑𝐾
𝑘=0 𝛾

𝑘
𝑣 H𝑘𝑣 , where {𝛾0

𝑣 , . . . , 𝛾
𝐾
𝑣 }

are personalized coefficients for node 𝑣 . Generally, 𝛾𝑘𝑣 ≠ 𝛾𝑘𝑢 , ∀𝑢, 𝑣 ∈
𝑉 . More specifically:

𝛾𝑘𝑣 =

{
𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 ({a𝑇 · [F𝑘𝑣 | |B𝑘𝑣 ]}𝐾𝑘=0), 𝑙𝑠𝑡𝑚_𝑎𝑡𝑡,

𝑡𝑎𝑛ℎ(c𝑇 · H𝑘𝑣 ), 𝑔𝑎𝑡𝑖𝑛𝑔.
(23)

As shown in Eq. (23), 𝑙𝑠𝑡𝑚_𝑎𝑡𝑡 follows [73] to yield attention scores
𝛾𝑘𝑣 , where F𝑘𝑣 /B𝑘𝑣 denotes forward/backward representation output
from a bidirectional LSTM model [26], a ∈ R2𝑑 is the linear projec-
tion vector, and 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 is the softmax function. 𝑔𝑎𝑡𝑖𝑛𝑔 follows
the gating mechanism to obtain 𝛾𝑘𝑣 via the learnable calibration
vector c ∈ R𝑑 , which is global and uniform for all nodes. Note that
different from previous approaches which typically restrict 𝛾𝑘𝑣 to
be non-negative, here we leverage the 𝑡𝑎𝑛ℎ function to enable both
signs of coefficients for better flexibility.

In summary, we propose two novel design dimensions, including
PE/SE-based re-wiring for 𝑁𝑘 (𝑣), and PE/SE-based weight for 𝑒𝑘𝑢𝑣 ,
to improve MPNNs’ capability in handling receptive field. For other
inter-layer and intra-layer design candidates, we incorporate pow-
erful designs in existing works. As shown in Tab. 3, we summarized
the adopted designs in our search space O. Overall, a MPNN model
M can be combined by different combinations from our space O.

3.4 Search Framework
As observed in Sec. 3.2, different graph properties can influence the
required receptive fields in MPNNs. But most of existing solutions
aim to propose a common solution for different graph data sets,
which makes them inflexible to capture complex receptive fields.
For example, homophilic graphs may benefit from diffusion-based
graph re-wiring, and non-attributed graphs may require PE/SE-
based graph re-wiring. Even in one model, when facing different
data, the model design requires a large change to deal with the
needs of the receptive field. Motivated by such observations, we
propose to incorporate the discussed designs and existing designs
in Sec. 3.3 into a big operator space (Tab. 3). Formally, the objective
of the proposed MpnnDRF can be formulated as:

𝜶 ∗,𝝎∗ = arg max
𝜶 ,𝝎
EM∼𝜋𝜶 𝑓 (M,𝝎;𝐷), (24)

where 𝜋 is the AutoGNN-controller parameterized by architec-
ture parameters 𝜶 , and is used to control the search of optimal
MPNN architectureM from the defined search space O (see Tab. 3);
𝑓 (M,𝝎;𝐷) evaluates the performance ofM with network weights
𝝎 on graph data 𝐷 with metric 𝑓 (·); E is the expectation function.

Searching for optimalM is equivalent to finding the best instan-
tiation of MPNN process shown in Eq. (7) and (9), which can be
further decomposed as selecting the most suitable candidate for
each design dimension. Given a specific design dimension, let O be
its candidate-set with size |O| = 𝑁 , and 𝑝𝛼 denotes the architecture
distribution to be optimized, which is parameterized by 𝛼 ∈ R𝑁
with each element 𝛼𝑜 ∈ R recording the importance of candidate
𝑜 , ∀𝑜 ∈ O. Then given the immediate representation z as input for
this dimension, the forward-propagation yields the output as:

𝑜 (z) =
∑︁
𝑜∈O

M𝑜 · 𝑜 (z), (25)

where M𝑜 ∈ {0, 1} and we let
∑
𝑜∈O M𝑜 = 1. The candidate selec-

tion process {M𝑜 }𝑜∈O is controlled by 𝑝𝛼 and intrinsically discrete,
which makes it unfeasible to directly back-propagate the gradient
of 𝛼 for optimization via Eq. (25). To tackle this, the concrete dis-
tribution [27, 44] is leveraged for unbiased approximation [71],
which adopts the re-parameterization trick as in Eq. (26) to relax
the discrete candidate selection (sampling) process to be continuous
and thus differentiable, where 𝜏 is the temperature for 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥
function, and𝑈𝑜 ∼ 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(0, 1) denotes the uniform sampling.

M𝑜 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 ((log𝛼𝑜 − log(− log(𝑈𝑜 )))/𝜏) . (26)
Empirically, we minimize the cross entropy loss function L(·)

as in Eq. (27) to solve our optimization objective (Eq. 24), where 𝐶
is the number of classes of graph dataset 𝐷 , Z𝑖 ∈ R𝐶 is the output
prediction for data sample (node or graph) 𝑖 based onM, and𝑦𝑖 ∈ R
is the label for data sample 𝑖 .

L(M, 𝜔 ;𝐷) = 1
|𝐷 |

|𝐷 |∑︁
𝑖=1

−𝑙𝑜𝑔( exp(Z𝑖 [𝑦𝑖 ])∑𝐶−1
𝑗=0 exp(Z𝑖 [ 𝑗])

). (27)

4 EXPERIMENTS
4.1 Experimental Settings
Task and data sets. For node classification task, we adopt 8 bench-
mark data sets with edge homophily ratio covering the whole spec-
trum from 0 to 1. Dataset statistics and splits are provided in Tab.
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Table 4: Model performance (accuracy with standard derivation) on the node classification task.
Type Model Actor Cornell Texas Wisconsin Citeseer PubMed DBLP CS
MLP MLP 38.58 (0.25) 91.36 (0.70) 92.26 (0.71) 92.26 (3.04) 73.82 (1.00) 86.43 (0.13) 77.57 (0.69) 89.51 (0.46)

Manual
MPNNs

GCN 30.59 (0.23) 66.72 (1.37) 75.16 (0.96) 69.56 (5.42) 79.21 (1.22) 86.97 (0.12) 85.91 (0.56) 91.93 (0.37)
GAT 35.98 (0.23) 76.00 (1.01) 78.87 (0.86) 73.08 (5.10) 80.56 (0.31) 86.64 (0.11) 88.18 (0.88) 90.89 (0.47)
SAGE 36.37 (0.21) 71.41 (1.24) 79.03 (1.20) 91.58 (3.32) 78.24 (0.30) 86.85 (0.11) 85.96 (0.59) 92.48 (0.21)

GBK-GNN 38.97 (0.97) 74.27 (2.18) 81.08 (4.88) 84.21 (4.33) 79.18 (0.96) 89.11 (0.23) 85.07 (0.39) 94.15 (0.31)
SGC 29.39 (0.20) 47.80 (1.50) 55.18 (1.17) 49.94 (6.28) 76.23 (0.29) 83.52 (0.10) 85.74 (0.45) 90.94 (0.47)

ChebNet 38.02 (0.23) 85.33 (1.04) 86.08 (0.96) 91.31 (3.40) 78.66 (0.26) 88.20 (0.09) 85.15 (0.58) 92.63 (0.26)
H2GCN 35.86 (1.03) 82.16 (4.80) 84.86 (6.77) 86.67 (4.69) 76.72 (1.50) 88.50 (0.64) 86.12 (3.14) 95.35 (0.32)
WRGAT 36.53 (0.77) 81.62 (3.90) 84.86 (6.77) 86.98 (3.78) 76.81 (1.89) 88.52 (0.92) 85.37 (0.62) 94.74 (0.08)
APPNP 38.86 (0.24) 91.80 (0.63) 91.18 (0.70) 92.14 (2.91) 80.74 (0.94) 89.15 (0.13) 86.90 (0.67) 91.96 (0.27)
GPRGNN 39.30 (0.27) 91.36 (0.70) 92.92 (0.61) 92.20 (3.42) 80.01 (0.28) 89.18 (0.15) 86.64 (1.08) 91.86 (0.41)

Auto
MPNNs

AutoGEL 42.79 (0.95) 90.62 (2.91) 90.44 (2.81) 91.62 (2.67) 80.71 (0.96) 90.43 (0.66) 91.34 (1.32) 94.82 (0.37)
MpnnDRF 42.97 (0.81) 92.99 (2.62) 95.08 (1.20) 94.83 (1.89) 81.08 (0.74) 90.47 (0.44) 92.69 (1.47) 96.06 (0.55)

7 (Appx. A.2). Among them, Actor [61] is actor co-occurrence net-
work; Cornell, Texas, and Wisconsin 1 are webpage networks; Cite-
seer [55], PubMed [55] and DBLP [5] are paper citation networks;
CS [56] is co-authorship network.

For graph classification, we adopt 6 widely adopted datasets (Tab.
8 in Appx. A.2). D&D and PROTEINS [14] are protein networks;
IMDB-BINARY and IMDB-MULTI [74] are movie-collaboration
datasets; COX2 [60] and NCI109 [64] are molecule datasets.
Baselines. For node classification, we adopt competitive baselines
from three categories: 1) 2-layer MLP; 2) Manual MPNNs: GCN
[30], GAT [63], and SAGE [24] are classic 1ℎ𝑜𝑝 MPNNs; GBK-GNN
[15] develop signed receptive field; SGC [70] directly deploys high-
order neighbors as receptive field; ChebNet [11] and H2GCN [83]
jointly utilize different orders of neighbors; WRGAT [59] design
graph-rewiring technique that leverages structural properties for
multi-channel receptive field; APPNP [31] and GPRGNN [9] are
DMPNNS with adaptive receptive fields fusion; 3) AutoMPNNs:
AutoGEL [67] explicitly models edge information in graphs.

For the graph classification task, we comparewith following base-
lines: 1) Manually-designed MPNNs: GCN [30], GAT [63], SAGE
[24], GIN [72], JKNet [73], and DGCNN [77] with global graph
pooling; ASAP [52], SAGPool [35], Graph U-Net [21], and DiffPool
[75] with hierarchical graph pooling. 2) AutoMPNNs: GraphNAS
[22] is the pioneering work of AutoMPNNs; PAS [69] focuses on
pooling operator search; and AutoGEL [67].
Implementation details.MpnnDRF 2 is implemented based on
PyTorch [49] and PyTorch Geometric [19]. All experiments are
conducted using one single NVIDIA Tesla V100 GPU. Effective-
ness results are reported as the average accuracy (with standard
derivation) over 30 different runs to eliminate randomness. Baseline
results are derived by running their official implementations.

4.2 Main Results
4.2.1 Comparison on the node classification task. The model com-
parisons on the node classification task are summarized in Tab.
4. 1ℎ𝑜𝑝 MPNNs (GCN, GAT, SAGE) improve simplest MLP on ho-
mophilic graphs by leveraging useful information from first-order
receptive field, but they cannot handle heterophilic graphs (first

1http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb
2Code is available at https://github.com/zwangeo/MpnnDRF

4 graphs). The signed receptive field (GBK-GNN) to jointly model
feature similarities and dissimilarities brings gains over class 1ℎ𝑜𝑝
MPNNs (with positive sign for receptive field) due to better flexi-
bility. Directly deploying high-order neighbors as receptive field
(SGC) seems not an adequate choice since it always underperforms
1ℎ𝑜𝑝 MPNNs. The combination of high-order and first-order neigh-
bors (ChebNet, H2GCN) yields consistently better results than their
separate usage across all data sets. The improvements are more
prominent on heterophilic graphs where useful messages may be
non-adjacent, but they still fail to beat the simplest MLP, indicating
that the over-squashing issue compromises model performance
in this case. Degree centrality based re-wiring that jointly cap-
tures proximity and structural information in graphs (WRGAT)
demonstrates similar capability with other multi-channel MPNNs
or multi-order models. Decoupled and adaptive MPNNs (APPNP,
GPRGNN) are strong baselines, which eliminate the potential neg-
ative impact of over-sized model parameters and benefit from a
larger receptive field without over-smoothing. Meanwhile, they
also achieve comparable or better results on heterophilic graphs.
AutoMPNN (AutoGEL) that automates the designs of message ag-
gregation and transformation demonstrates significantly superior
results overmanualMPNNs.Moreover, MpnnDRF not only achieves
consistently superior and robust test performances as shown in Tab.
4, but also overall high𝑀𝐴𝐷 values (0.53-0.68) and high 𝐼𝐺𝑟𝑜𝑢𝑝 val-
ues (0.40-0.79) when dealing with different graph benchmarks and
MPNN layer settings (2-10). It indicates the great capacity of Mpn-
nDRF to better capture receptive fields and alleviate well-known
issues, including over-smoothing and over-squashing.

Moreover, computational time may be one of the major concerns
of AutoMPNNs (including MpnnDRF). To alleviate it, we follow
DMPNN to eliminate non-linear transformation matrix for more
light-weighted MPNNs; besides, we employ the popular weight-
sharing mechanism [51] to avoid training hundreds of candidate
MPNNs to convergence, thus further boosting efficiency. We show
empirical computational efficiency of MpnnDRF and several base-
lines in Tab. 6, where search-based MpnnDRF does not significantly
increases running time over non-searching baselines. More discus-
sions and results in terms of efficiency and scalability are provided
in Appx. A.4.
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Table 5: Model performance (accuracy with standard derivation) on the graph classification task.
Type Model D&D PROTEINS IMDB-B IMDB-M COX2 NCI109

Manual
MPNNs

GCN 78.12 (4.33) 74.84 (2.82) 72.67 (6.42) 50.40 (3.02) 79.23 (2.19) 73.44 (1.92)
GTA 75.56 (3.72) 75.30 (3.72) 74.07 (4.53) 49.67 (4.30) 81.56 (4.17) 74.10 (2.45)
SAGE 77.27 (4.06) 73.75 (2.97) 72.17 (5.29) 48.53 (5.43) 80.31 (5.94) 75.53 (1.64)
GIN 75.40 (3.68) 74.48 (2.78) 71.67 (2.77) 49.80 (2.50) 83.09 (4.17) 74.56 (2.10)
JKNet 77.69 (2.35) 75.39 (5.17) 73.47 (4.45) 48.86 (4.96) 79.66 (2.26) 73.83 (1.88)

DGCNN 76.66 (4.03) 73.57 (4.69) 73.67 (5.70) 49.00 (3.56) 79.85 (2.64) 75.06 (1.65)
ASAP 77.35 (4.15) 74.93 (3.57) 74.27 (3.97) 50.13 (3.44) 80.95 (3.20) 73.76 (2.24)

SAGPool 75.06 (5.06) 73.12 (4.47) 74.87 (4.09) 49.33 (4.90) 79.45 (2.98) 64.89 (3.15)
Graph U-Net 77.10 (5.17) 74.40 (3.49) 73.17 (4.84) 48.80 (3.19) 80.30 (4.21) 72.79 (2.29)
DiffPool 77.75 (4.00) 73.55 (3.22) 71.86 (5.63) 49.53 (3.98) 79.66 (2.64) 73.15 (2.14)

Auto
MPNNs

GraphNAS 71.98 (4.54) 72.51 (3.36) 71.10 (2.30) 46.93 (3.64) 77.73 (1.40) 72.28 (2.28)
PAS 78.96 (3.68) 76.64 (3.29) 75.10 (5.32) 52.20 (3.73) 83.44 (6.33) 76.84 (2.72)

AutoGEL 81.31 (2.94) 78.29 (3.11) 74.85 (3.12) 52.41 (2.85) 85.07 (5.32) 78.68 (1.53)
MpnnDRF 82.74 (2.19) 81.64 (2.79) 76.56 (1.61) 54.07 (2.79) 89.04 (2.30) 77.59 (1.05)

Table 6: Computational time (clock time in seconds, running
on one single Tesla V100) comparison with competitive base-
lines on the node classification task.

Model Acto. Corn. Texa. Wisc. Cite. PubM. DBLP CS
SGC 15 11 12 20 204 219 260 407

ChebNet 21 32 30 29 47 48 36 87
GPRGNN 25 23 21 24 36 37 34 65
MpnnDRF 31 24 26 28 49 71 69 91

4.2.2 Comparison on the graph classification task. Furthermore,
we demonstrate the performance on the graph classification task in
Tab. 5. We observe that on the selected benchmarks, performance
gains brought bymore sophisticated graph pooling function 𝑟𝑒𝑎𝑑 (·)
are only marginal compared to simple global pooling. Instead, it
may produce more promising results by carefully designing more
appropriate receptive fields (MpnnDRF) andmanipulatingmessages
(MpnnDRF and AutoGEL) during the iterative stage.

4.3 Ablation Studies.
Apart frommain results, we further propose variants with degraded
space (see Tab. 9) and conduct ablation studies to investigate the
influence of MpnnDRF’s important design choices regarding recep-
tive field (see Sec. 3.3): 1) the receptive field expansion mechanism,
2) the attentive receptive field, 3) receptive field fusion, 4) decoupled
schema to aggregate and transform messages from receptive field,
and 5) PE/SE-based methods. MpnnDRF-1ℎ𝑜𝑝 uses the fixed 1ℎ𝑜𝑝
expansion mechanism; MpnnDRF-\𝑎𝑡𝑡 only allows basic degree-
based normalization; MpnnDRF-\𝑖𝑛𝑡𝑒𝑟_𝑎𝑔𝑔 is restricted to non-
adaptive receptive fusion; MpnnDRF-𝑐𝑜𝑢𝑝𝑙𝑒 follows the coupled
schema; MpnnDRF-𝑃𝐸/𝑆𝐸_𝑟𝑒𝑤𝑖𝑟𝑒 and MpnnDRF-𝑃𝐸/𝑆𝐸_𝑤𝑒𝑖𝑔ℎ𝑡
leverage PE/SE to re-wiring neighbors to induce receptive field and
define weighted receptive field respectively. Empirical results of
variants on node classification task are provided in Tab. 10 and 11.

We notice that MpnnDRF-1ℎ𝑜𝑝 is a strong baseline on several ho-
mophilic data sets but inferior tha MpnnDRF and other variants on
heterophilic graphs, indicatingmore advanced neighbormechanism
is indeed crucial MPNNs, especially for heterophilic graphs. How-
ever, evenwith the fixed 1hopmechanism,MpnnDRF-1ℎ𝑜𝑝 achieves
at least comparable results with selected manual MPNNs, implying

that MpnnDRF’s other design dimensions may work as supplemen-
tal when the most suitable expansion mechanism is not available.
Similar patterns are exhibited in MpnnDRF-\𝑎𝑡𝑡 and MpnnDRF-
\𝑖𝑛𝑡𝑒𝑟_𝑎𝑔𝑔, but MpnnDRF-\𝑎𝑡𝑡 suffers from slightly more severe
degrades on heterophilic graphs and MpnnDRF-\𝑖𝑛𝑡𝑒𝑟_𝑎𝑔𝑔 on ho-
mophilic graphs respectively, which validates that different graphs
may depend more on different designs. MpnnDRF-𝑐𝑜𝑢𝑝𝑙𝑒 requires
O(𝐾𝑑2) more model parameters but fail to bring gains over Mpn-
nDRF no matter different graph properties. This also aligns with
findings from previous works [31] that the nonlinear transforma-
tion may not be the critical and necessary design for MPNNs.

5 CONCLUSION
In this paper, we present a novel MpnnDRF to improve MPNNs’
ability by capturing the receptive field in different graphs. We first
investigate existing solutions to capture receptive field, then pro-
pose improvements in intra-layer inter-layer design dimensions.
To handle data-dependent properties, we incorporate existing de-
signs into a search space and formulate a search framework, which
can search suitable MPNNs to capture the receptive field for the
given graph data. On node classification and graph classification
task, MpnnDRF achieves consistently leading results than baselines
across popular graph benchmarks. For the future works, it may be
worth trying to investigate the discussed problems in other graph
tasks, like link prediction on knowledge graphs [12, 13, 57].
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Table 10: Performance (accuracy with standard derivation)
of MpnnDRF variants on node classification for homo. data.

Model Cite. PubM. DBLP CS
MpnnDRF 81.08 (0.74)90.47 (0.44)92.69 (1.47)96.06 (0.55)

MpnnDRF-1ℎ𝑜𝑝 80.63 (0.84) 90.27 (0.55) 91.91 (1.24) 95.85 (0.33)
MpnnDRF-\𝑎𝑡𝑡 80.83 (0.39) 89.76 (0.50) 92.52 (1.37) 95.79 (0.26)

MpnnDRF-\𝑖𝑛𝑡𝑒𝑟_𝑎𝑔𝑔 78.68 (1.77) 90.05 (0.62) 90.59 (1.40) 95.57 (0.35)
MpnnDRF-𝑐𝑜𝑢𝑝𝑙𝑒 79.72 (0.97) 89.67 (0.64) 92.05 (1.66) 95.79 (0.36)

Table 11: Performance (accuracy with standard derivation)
of MpnnDRF variants on node classification for heter. data.

Model Acto. Corn. Texa. Wisc.
MpnnDRF 42.79 (0.95) 92.99 (2.62)95.08 (1.20)94.83 (1.89)

MpnnDRF-1ℎ𝑜𝑝 40.74 (2.19) 86.38 (5.80) 90.16 (2.32) 86.44 (6.19)
MpnnDRF-𝑃𝐸/𝑆𝐸_𝑟𝑒𝑤𝑖𝑟𝑒 41.82 (1.73) 90.53 (4.09) 93.01 (2.55) 90.56 (3.99)

MpnnDRF-\𝑎𝑡𝑡 41.86 (1.33) 90.96 (4.61) 91.90 (2.28) 89.12 (9.35)
MpnnDRF-𝑃𝐸/𝑆𝐸_𝑤𝑒𝑖𝑔ℎ𝑡 42.05 (1.40) 91.23 (3.94) 92.61 (2.31) 90.95 (3.77)
MpnnDRF-\𝑖𝑛𝑡𝑒𝑟_𝑎𝑔𝑔 42.75 (1.07) 90.00 (3.57) 91.39 (3.35) 92.38 (2.85)
MpnnDRF-𝑐𝑜𝑢𝑝𝑙𝑒 43.16 (1.24) 92.66 (3.59) 93.75(2.91) 93.81 (2.78)

Table 7: Data statistics for node classification task.
Property Acto. Corn. Texa. Wisc. Cite. PubM. DBLP CS

ℎ𝑜𝑚𝑜. 𝑟𝑎𝑡𝑖𝑜 0.22 0.13 0.11 0.20 0.74 0.80 0.83 0.81
# Nodes 7600 183 183 251 3327 19717 17716 18333
# Edges 26705 278 287 458 4552 44324 52867 81894

# Features 932 1703 1703 1703 3703 500 1639 6805
# Classes 5 5 5 5 6 3 4 15
Table 8: Data statistics for graph classification task.

Property D&D PROTEINS IMDB-B IMDB-M COX2 NCI109
Domain Bioinfo. Bioinfo. Social Social Chem. Chem.
# Graphs 1718 1113 1000 1500 467 4127
# Features 89 3 0 0 3 0
# Classes 2 2 2 3 2 2

Avg. # Nodes 384.3 39.1 19.8 13 41.2 26.69
Avg. # Edges 715.7 72.8 96.5 65.9 43.5 32.13

Table 9: Summary of MpnnDRF variants.
Model Degraded Space

MpnnDRF -
MpnnDRF-1ℎ𝑜𝑝 𝑁 (𝑣) = {1ℎ𝑜𝑝}

MpnnDRF-𝑃𝐸/𝑆𝐸_𝑟𝑒𝑤𝑖𝑟𝑒 𝑁 (𝑣) = {𝑃𝐸_𝑟𝑒𝑤𝑖𝑟𝑒, 𝑆𝐸_𝑟𝑒𝑤𝑖𝑟𝑒}
MpnnDRF-\𝑎𝑡𝑡 e𝑢𝑣 = {𝑛𝑜𝑛_𝑛𝑜𝑟𝑚, 𝑠𝑦𝑠_𝑛𝑜𝑟𝑚, 𝑟𝑤_𝑛𝑜𝑟𝑚}

MpnnDRF-𝑃𝐸/𝑆𝐸_𝑤𝑒𝑖𝑔ℎ𝑡 e𝑢𝑣 = {𝑟𝑒𝑙_𝑙𝑒𝑝𝑒, 𝑟𝑒𝑙_𝑟𝑤𝑝𝑒}
MpnnDRF-\𝑖𝑛𝑡𝑒𝑟_𝑎𝑔𝑔 𝑙𝑎𝑦𝑒𝑟_𝑎𝑔𝑔 = {𝑐𝑜𝑛𝑐𝑎𝑡,𝑚𝑒𝑎𝑛}
MpnnDRF-𝑐𝑜𝑢𝑝𝑙𝑒 𝑢𝑝𝑑 = {𝜎W}

A SUPPLEMENT
A.1 Over-smoothing and -squashing: Existing

Metrics
A.1.1 MAD for Over-smoothing. Mean Average Distance [7, 42]:
𝑀𝐴𝐷 = 1

|𝑉 |2
∑
𝑢,𝑣∈𝑉 𝑑𝑖𝑠𝑡 (H𝑢 ,H𝑣) (𝑙𝑝 -norm or cosine distance are

common choices for 𝑑𝑖𝑠𝑡 (·)) is one of the popular metrics for mea-
suring the over-smoothing issue. 𝑀𝐴𝐷 falls within the range of
[0, 1], and𝑀𝐴𝐷 → 0may indicate the occurrence of over-smoothing.

A.1.2 Jacobian for Over-squashing. On heterophilic graph data
sets (which are prevalent in the real world), over-squashing may
become another prominent issue. It refers to MPNNs’ inability to
propagate distant messages without severe distortion due to the
bottleneck originating from the original graph topology [2, 62]. Jaco-
bian [62, 73] is an existing metric to study over-squashing, defined

as 𝐼 (𝑣,𝑢) =
��� 𝜕H𝑣

𝜕X𝑢

��� . It measures the absolute influence (sensitivity)
of node 𝑢 to node 𝑣 , i.e., on what extent the output representation
of 𝑣 would be influenced by the input attribute of 𝑢. When 𝑢 is
important but distant for given 𝑣 , 𝐼 (𝑣,𝑢) → 0 may indicate the
occurrence of over-squashing for the message from node 𝑢.

A.2 Dataset Statistics
We follow common practice to transform directed benchmark graphs
Actor, Cornell, Texas, and Wisconsin into undirected graphs and
leverage 60%/20%/20% nodes per class as training/validation/testing
samples for the node classification task [9]; for graph classification,
we employ 10-fold validation [69].

A.3 MpnnDRF Variants: Summary and Results.
See Tab. 9, 10, and 11.

A.4 Computational Efficiency and Scalability
MpnnDRF makes following efforts to guarantee the computational
overhead. Firstly, MpnnDRF follows the popular weight-sharing
mechanism in Neural Architecture Search (NAS) community to
build its super-net, which forces all candidate MPNNs within the
super-net to share weights (referred as one-shot NAS because it
only needs to train the network weights once). Such way can avoid
training hundreds of candidate MPNNs to convergence, thereby
saving computational costs. Secondly, MpnnDRF follows advanced
DMPNN to design its message passing functions (see Eq. (10), (11),
and (12)). It eliminates the non-linear transformation matrix at each
layer, thus further reducing the computational cost. Empirically,
we further provide concrete computational time of MpnnDRF and
several baselines on node classification in Tab. 6, where searching-
based MpnnDRF does not require significantly longer running time
compared with non-searching MPNN baselines.

For scalability, we additionally evaluate MpnnDRF on more scale
dataset ogbg-molhiv (contains more than 41K graphs) and AUC
results are shown in Tab. 12. MpnnDRF achieves better or at least
comparable results compared with competitive baselines, indicating
the efficacy of MpnnDRF to handle more scale dataset. Moreover,
we further present concrete computational time of MpnnDRF on
adopted graph classification benchmarks as in Fig. 13. We observe
that MpnnDRF exhibits nice scalability with the increase of dataset
scale (see Tab. 8 for more details about dataset scale and statistics).

Table 12: Model performance (AUCwith standard derivation)
on the ogbg-molhiv dataset for graph classification task.
Model GCN GIN PNA SAN MpnnDRF
molhiv 76.06 (0.97) 75.58 (1.40) 79.05 (1.32) 77.85 (0.25) 79.31 (1.21)

Table 13: Computational time (clock time in hours, running
on one single Tesla V100) of the proposed MpnnDRF on dif-
ferent scale of datasets for the graph classification task.

Model D&D PROTEINS IMDB-B IMDB-M COX2 NCI109 molhiv
MpnnDRF 1.93 0.74 0.66 0.55 0.40 0.47 3.91
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(a) Test accuracy (b) 𝑀𝐴𝐷 (c) 𝐼𝐺𝑟𝑜𝑢𝑝

Figure 4: Results of GCN variants in terms of different neighbor mechanisms and 𝑖𝑛𝑡𝑒𝑟_𝑎𝑔𝑔 on Cornell and Wisconsin dataset.
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