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ABSTRACT
Relation extraction in knowledge base construction has been re-

searched for the last decades due to its applicability to many prob-

lems. Most classical works, such as supervised information extrac-

tion [2] and distant supervision [23], focus on how to construct

the knowledge base (KB) by utilizing the large number of labels or

certain related KBs. However, in many real-world scenarios, the

existing methods may not perform well when a new knowledge

base is required but only scarce labels or few related KBs available.

In this paper, we propose a novel approach called, Relation Ex-
traction via Domain-aware Transfer Learning (ReTrans), to extract

relation mentions from a given text corpus by exploring the ex-

perience from a large amount of existing KBs which may not be

closely related to the target relation. We first propose to initialize

the representation of relation mentions from the massive text cor-

pus and update those representations according to existing KBs.

Based on the representations of relation mentions, we investigate

the contribution of each KB to the target task and propose to select

useful KBs for boosting the effectiveness of the proposed approach.

Based on selected KBs, we develop a novel domain-aware transfer

learning framework to transfer knowledge from source domains to

the target domain, aiming to infer the true relation mentions in the

unstructured text corpus. Most importantly, we give the stability

and generalization bound of ReTrans. Experimental results on the

real world datasets well demonstrate that the effectiveness of our

approach, which outperforms all the state-of-the-art baselines.

CCS CONCEPTS
•Computingmethodologies→Transfer learning; • Informa-
tion systems → Data mining;
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1 INTRODUCTION
Knowledge base construction (abbreviated to KBC) is one of the

most effective ways to explore and organize knowledge from the

huge amount of unstructured data existing in the resourceful web,

e.g., newswires, blogs, and chat logs. So far, various knowledge bases

such as DBpedia [1], Freebase [4] and YAGO [31] have been curated

and widely used in many real-world applications. The fundamental

goal of KBC is to turn unstructured text data into structured rela-

tional facts by annotating semantic information automatically. A

crucial task in KBC is the extraction of relations (e.g., president_of)

between two entities (e.g., Donald Trump, Unites States) from mas-

sive text corpora. This task is still quite challenging because of the

inherent diversity and ambiguity of natural languages.

In supervised approaches [8][14], researches formulate the re-

lation extraction task as a classification problem, which given a

pair of entity mentions in a sentence, tries to predict the relation

between two entities from a set of pre-defined relation types. Such

methods require a large amount of human annotated data, which

is error-prone and time-consuming to acquire. The injection of

erroneous annotated relational facts may hurt the accuracy of a

trained classifier significantly [17]. Furthermore, manual labeling

efforts are devoted to training a classifier for each relation type.

The annotated facts are overfit to a single relation type and cannot

be reused or adapted to extract a new relation.

To alleviate the labor-intensive data labeling problem, weak

supervision (i.e., semi-supervised and bootstrapping approaches)

proposes to utilize a small set of tagged seed instances or a few

hand-crafted extraction patterns per relation to launch the training

process [7][11][24]. For instance, with accurate and discriminated

seeds populated, weak supervision methods are able to annotate

“Google” and “YouTube” as a positive example for the relation “cor-

porate_acquire”, and “Yahoo” and “Microsoft” as a negative example.

It is important to notice that these kinds of methods assume that

seeds are sufficiently frequent and unambiguous so that they are

representative enough to extract correct relational facts from a text

corpus, which still involves strict and careful seed selection efforts

from crowds or domain experts.

Different from the supervised andweakly supervised approaches,

methods based on distant supervision have been developed to ad-

dress the relation extraction problem by exploring the existing

KBs [15][23]. The intuition behind distant supervision is: any sen-

tence that contains a pair of entities participating in a known rela-

tion is likely to express that relationship in some way. In Fig.1, the

first sentence does not mention the explicit information of president

but we can extract the potential relation type “president_of” for the

(“Donald Trump”, “US”) pair by referring to the known KB Person.

In other words, the pre-defined knowledge from an existing KB

makes it much easier to infer the relation between entities through
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ID Sentence in Text Corpus

Donald Trump will visit Argentina for the G20 leaders summit, 
US Treasury Secretary Steven Mnuchin has confirmed.

Trump has been recognized as one of America's Top Doctors for 
Cancer

Trump‘s relationship to McMahons back to Atlantic City, N.J, US,
when Trump helped bring two consecutive WrestleMania events.

Entity 1.

Donald Trump
Entity 2.

United States

Scarce and noisy 
text annotations 
are not enough

Entity 1 Entity 2 Relation Type

Donald_Trump United_States president_of

Donald_Trump United_States born_in

Donald_Trump Trump Plaza own

McMahons WWE CEO

Relation Mentions in Source KBS

Entity Pair in S1: (Trump, US)
Relation type: president_of

Entity Pair in S2: (Trump, American)
Relation type: president_of

Entity Pair in S3: (Atlantic, WrestleMania)
Relation type: ?

Labeled Training Data

Supervised Learning

Wrong Labeling

Distant Supervision

Refer to Existing KBs Need New Annotations
Not Linkable

Trump‘s relationship to McMahons
back to [Atlantic City], N.J, US, when 
Trump helped bring two consecutive 
[WrestleMania] events.

Figure 1: Current methods, such as supervised learning and distant supervision, may suffer from scarce and noisy tagged data
or non-linkable entity pairs. We can explore more knowledge from the useful knowledge base, even if these knowledge bases
and target domains have few overlapping entity pairs.

proper entity pair linking. However, when people plan to construct

a new KB, it is not uncommon that many entities included in the

given corpus cannot be linked directly by the existing KBs. In Fig.1,

when a new KB Sport − Event is desired, no related KB contains the

entity pair (“Atlantic City”, “WrestleMania”) in S3. This is because

most distant supervision methods assume that the whole entity pair

must be contained in existing KBs. Apparently, distant supervision

methods are insufficient to handle such a situation.

In this paper, we relax the constraints that are required in super-

vised methods and distant supervision approaches: a large amount

of labeled data is available or existing KBs must contain the exact

same entity pair or relation mention with target text corpus. We

observe that relational facts in a given sentence can be extracted

by examining multiple KBs even they share no common entity pair.

As shown in Fig. 1, we notice the co-occurrence relation between

“Trump” and “McMahons” from the text. And we know the “Trump”

owns the “Trump Plaza” in the “Atlantic City” from KB Company

and “McMahons” is the CEO of a famous wrestle company “WWE”

from KB Person. It could indicate that the event “WrestleMania”

was held in the “Atlantic City”. Since there are many existing KBs

have been well annotated (i.e., Freebase, DBpedia and YAGO) and

will be more KBs in the future, it is desirable to make use of existing

KBs even though some KBs have a low semantic correlation with

the target corpus. Furthermore, the collective knowledge from mul-

tiple KBs may cancel out noisy facts and complement each other

automatically to a certain extent.

Unlike the supervised method that requires a large number of

labeled instances in the target domain and the distant supervision

method that highly relies on the correspondence between the ex-

isting KB and the target corpus, transfer learning [3][26][28] is a

suitable technique for dealing with scarce label problem by leverag-

ing KBs that are partially correlated with the target domain. It has

long been studied to address the scarce labeling problem in many

machine learning tasks, such as sentiment classification [12], image

classification [19][39], recommendation [27] and urban comput-

ing [35]. Conventional transfer learning methods can be generally

classified into three categories: instance-based, model-based and

feature-based. Many instance-based methods aim to transfer pa-

rameters from a source domain to regularize model parameters in

a target domain [36][33]. In [37], a basic learner was proposed to

boost the task in the target domain by leveraging the most useful

instances in the source domain. Model-based transfer learning al-

gorithms such as fine-tuning [9] assume that a model trained in a

source domain can be adapted to a target domain. Feature-based

transfer learning methods [3][25] focus on investigating the tech-

niques that can learn transferable latent feature factors between two

domains. These techniques include manually selecting pivot fea-

tures, dimension reduction [25], collective matrix factorization [20],

sparse coding [41], and deep learning [34].

However, most of current transfer learning techniques can only

acquire knowledge from a single source domain. It is difficult to

absorb knowledge from multiple KBs simultaneously to perform

relation extraction in a target KB. Another challenge is that unlike

the previous transfer learning techniques that try to solve how
to transfer between two domains, more attention should be paid

to what to transfer among many transferable domains. Like the

example in Fig. 1, part of source KBs is useful (e.g., “McMahons” and

“Trump Plaza”) while the rest may not be contributed to the given

target sentence. If we transfer knowledge from all the available

domains without selection, we probably take the risk of negative

transfer since some domains may be semantically far away from

the target domain.

To address the aforementioned challenges, we propose a novel

framework named Relation Extraction via Domain-aware Transfer

Learning (abbreviated to ReTrans) to selectively transfer knowledge
from existing KBs to facilitate relation extraction for a target KB,
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which is applicable and robust, no matter whether there is the low

correlation between existing KBs with target text corpus or scarce

labeled instances in the target domain. Our ReTrans framework con-

sists of four major components: 1) initializing the representations

of relation mentions from the massive unstructured text corpus and

then updating those representations according to the existing KBs;

2) inferring the significance of each KB to the target text corpus

based on two proposed metrics: domain correlation and discrim-

inative ability; 3) determining which KBs should be utilized for

knowledge transfer in terms of significance ; 4) transferring useful

knowledge across KBs and inferring the true relations of candidate

entity pairs on the given text corpus The main contributions of our

work can be summarized as follows:

• We propose a novel transfer learning framework named

ReTrans to address the relation extraction problem for a

target text corpus. Unlike prior methods that require inten-

sive relation-specific labeling efforts, ReTrans focuses on

acquiring useful information from relational facts in multi-

ple existing KBs and perform knowledge transfer to a target

domain automatically.

• We propose to learn and refine the representations of entities

and relations from the existing KBs. The representations

will be used to disclose the latent semantics of entities and

relations across KBs for knowledge transfer.

• ReTrans incorporates an evaluation model to measure the

correlation between existing KBs and the target text corpus.

ReTrans is capable of leveraging the information from par-

tially correlated relational facts and solving the label variance

problem across domains.

• We propose to filter out useless KBs by distinguishing the

significance of each source KB for relation extraction in the

target domain.

• Weprovide the algorithmic stability and generalization bound

of our proposed method. Extensive experiments have been

conducted to verify the effectiveness of ReTrans.

2 PROBLEM AND FRAMEWORK
In this section, we present the notations used throughout this pa-

per and formally define the problem. The input to our proposed

method is a set of existing domain-specific knowledge bases S =

{S1, · · · , SK }, a set of candidate entity pairs X ∗
that identified in

the unstructured text corpus C∗
and relation typesY∗

in the target

domain. The major notations are summarized in Table 1.

2.1 Problem Definition
In general, a domain-specific KB provides information in a particu-

lar field. For example, a KB Person describes occupation, location

and birth date of famous persons. The attributes, persons and loca-

tion in such a KB are entities (denoted by e), e.g., Barack_Obama

and United_States, while relations (denoted by y) are assigned be-

tween entities, i.e., President_of is the relation betweenBarack_Obama

and United_States. A relation mention m = (e,y) is formed if

there exists a relation y between two entities e = (e1, e2). In this

work, given a current KB Si ∈ S, the set of relation mentions

contained in Si is denoted byMi = {mi
j }
Ni
j=1

.

Table 1: Summary of Notations

Notations Descriptions
S = {S1, · · · , SK } A set of existing domain-specific knowledge bases

Mi = {(eij , y
i
j )}

Ni
j=1

The relation mentions on the KB Si
XSi , X

∗
The entity pairs in Si and C∗

, respectively

YSi , Y
∗

The relation set in Si and the target domain

ESi , E
∗

The entity sets in Si and the target domain

FSi , F
∗

The feature sets in Si and the target domain

σ (S, S∗) The domain correlation between S and S∗

ϕ(S, xt , yt ) The capability of the KB S in terms of xt and yt
Φ(S, S∗) The discriminative ability of KB S to S∗

In the field of transfer learning, there are two important concepts:

domain and task. A domainD usually contains two components, a

feature spaceX and a marginal probability distribution P(X ), where

X = {x1, · · · ,xn } ⊂ X is the input space. Generally, two domains,

D and D ′
, are different if X , X′

(different feature spaces) or

P(X ) , P ′(X ) (different marginal probability distributions). Given

a domain D = {X, P(X )}, a task T consists of two components: a

label space Y and a predictive function h(·). In a typical classifica-

tion task, Y is the set of all the possible labels, and y = h(x ∈ X ) is

the predicted label of a data sample x , i.e., y ∈ Y. The predictive

function h(·) can be learned from training process. From the per-

spective of probability, h(x) can be expressed by P(y |x). Similarly,

a task T is different from T ′
ifY , Y ′

or P(Y |X ) , P ′(Y |X ). Note

that Y is the set of all possible labels, while Y is the corresponding

labels with respect to X .

In this paper, the set of source domains are denoted to MS =

{M1, · · · ,MK }, where Mi = {(eij ,y
i
j )}

Ni
j=1

is the relation mention

set of the KB Si ∈ S. Given an existing KB Si , the source domain

Mi on Si can be formulated as the input XSi = {eij }
Ni
j=1

and the

corresponding outputs YSi = {yij }
Ni
j=1

. Moreover, we denote ESi
and E∗ to all entities recognized in Si and C∗

, respectively.

Note that the traditional transfer learning assumes that only one

source domain is available in the process of knowledge transfer. The

main difference between traditional transfer learning with Domain-

Aware Transfer Learning (abbreviated to DaTL) is that there can be

more than one transferable domains in DaTL. Next we define the

relation extraction task with DaTL as follows.

Definition 1 (Problem Definition). Given a collection of ex-
isting domain-specific knowledge bases S, a set of target candidate
entity pairs X ∗ identified in the text corpus C∗ and a target relation
type set Y∗, the relation extraction task with DaTL aims to learn a
predictive function h∗ : X ∗ → Y∗ as accurately as possible, which
can be expressed as:

h∗(xt ) = arg min

yt ∈Y∗
R(S,xt ,yt ), (1)

where xt ∈ X ∗, yt ∈ Y∗ and R(S,xt ,yt ) is the risk function to assess
the correctness of assigning xt with relation yt .

2.2 The ReTrans Framework Overview
Algorithm 1 provides the pseudo code of our proposed ReTrans.

We here provide an overview of the proposed framework relation
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extraction with domain-aware transfer learning (ReTrans), which

consists of four components:

• Representations Initialization: Extract text feature sets {FS1
, · · · , FSK }

for existing KBs S and F ∗ from the massive text corpus C∗
. We

apply embedding methods to generate the initial vector represen-

tations of entity (i.e., V̂ESi in source domain and V̂E∗ in target

domain), relations (i.e., V̂YSi
and V̂Y∗ ) and text features (i.e., V̂FSi

and V̂F ∗ ). (Section 3.1)

• Representation Refinement: Given the initial representations V̂ESi ,
V̂FSi and V̂YSi

, we refine these representations to VESi ,VFSi ,VYSi
using the translation methods based on relation mentions in the

existing KBsMS
. (Section 3.2)

• KB Significance Evaluation: Based on Mi , FSi , and F ∗, estimate

both the correlation σ (Si , S
∗) and discriminative ability Φ(Si , S

∗)

between the KB Si with the target domain S∗ for each Si ∈ S.

(Section 4)

• KB Selection and KB Translation: Given the correlation σ and the

discriminative ability Φ, we select the most useful KBs S̄ from S

that own large correlation and high discriminative ability. We then

infer the hypothesis h∗ based on the S̄ . (Section 5)

3 REPRESENTATION INFERENCE
In this section, we propose to utilize massive text corpus C∗

to

initialize the representations of entities and relations in the target

domain.We then refine the representations under the supervision of

existing KBs. Intuitively, the representations inferred from massive

text corpusmay be biased due to the noisy and ambiguous sentences.

Regarding that the relation mentions in existing KBs typically have

high accuracy, we employ such labeled relational facts to refine the

representations learned from the target corpus.

3.1 Representation Initialization
Following the previous work [14][30], we first extract various lex-

ical features from both mention itself (e.g., head token) and its

context (e.g., bigram) in the text corpus to capture syntax and se-

mantic meanings of both entities and relations. The set of unique

lexical features extracted of relation mentions and entities on the

KB Si as F
M
Si

and FESi
, respectively. We define FSi = FMSi

∪ FESi
as the

feature set of KB S on the text corpus. The features are summarized

in Table 3.

Intuitively, two entities or relations are likely to represent similar

meanings if they sharemany lexical features. In other words, feature

co-occurrence (i.e., the number of shared features) can be used as

the similarity of entities or relations. Thus, we have a hypothesis:

Hypothesis 1 (Feature Co-occurrence). Two entities or rela-
tions tend to close to each other in the latent factor space (similar
meanings) if they share many lexical features, and the converse way
also holds.

Given a set of entities E and a set of relationsY, we explain how

to initialize their representations in details. Let ve , vy , vf denote

the vector representations of entity e , relation y and feature f ,
respectively. Inspired by word2vec [22] and order proximity [32],

we model the Hypothesis 1 as follows:

Le = −
∑
f ∈F

∑
e ∈E

wf e logp(vf | ve ), (2)

where p(vf | ve ) denotes the probability of vf generated by ve and
wf e denotes the co-occurrence frequency between (vf ,ve ) in the

text corpus. Similarly, we model the loss of relations:

Ly = −
∑
f ∈F

∑
y∈Y

wf y logp(vf | vy ). (3)

The representation initialization can be achieved by minimizing

the combination of Equation 2 and Equation 3:

{V̂E , V̂Y , V̂F } = arg min

ve ,vy,vf
LInit = arg min

ve ,vy,vf
Le + Ly . (4)

We solve Equation 4 by updating ve , vy , vf alternatively until the

local optimal solution is reached. In order to avoid summation over

all features, we employ negative sampling to sample multiple false

features [22].

3.2 Representation Refinement
Now that we have initialized the representations of entities and rela-

tions as V̂E and V̂Y , we explain how to refine these representations

based on the supervision from the source KBs.

Recall that a relation mentionm = ((e1, e2),y) in a KB means the

existence of relation y between e1 and e2. Various representation

learning works (e.g., TransE [5]) capture the relationship between

entities using “translation” based models. We present the core idea

of the translation approach using the following hypothesis.

Hypothesis 2 (Triangle Translation). For a relation mention
m = ((e1, e2),y), ve2

should be close to ve1
plus vy in the latent space,

i.e., ve2
≈ ve1

+ vy .

In other words, the more similar ve2
and ve1

+ vy are, the more

likely that the relation y exists between e1 and e2. We can measure

the error of a relation mention m = ((e1, e2),y) by ℓ2-norm as

ϵ(m) =
ve1
+ vy − ve2

2

2
, and the smaller ϵ(m) is, the more likely

the relation exists between the entities.

As discussed before, initial representations learned from raw text

corpus may not follow the above hypothesis. Therefore, in order to

refine representations of linkable entities (those entities appear in

both source domain and target domain) and relations, we define a

margin-based loss as the objective function:

Lm =
∑

m∈ML

∑
m′∈Mneд

max{0, 1 + ϵ(m) − ϵ(m′)}, (5)

where ML = {(e,y)|e ∈ X ∗, (e,y) ∈ ∪Ki=1
Mi } represents the rela-

tion mention (e,y) in MS
whose entity pair e overlapped in the

target domain such as e ∈ X ∗
and Mneд is the set of negative

samples form = ((e1, e2),y), such asm′ ∈ Mneд is randomly sam-

pled from ((e1, e2),y
′) ∪ ((e ′

1
, e2),y) ∪ ((e1, e

′
2
),y) with y′ ∈ Y∗

and e ′
1
, e ′

2
∈ E∗ [5]. We formulate Equation 5 by intuitive idea of

distant supervision: given a relation mention (e,y) in a existing

KB, the translation error between e with y should be less than the

translation error of any negative sample [29].
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4 KB SIGNIFICANCE EVALUATION
Motivated by L2T framework [38], in this work, we propose to

evaluate the significance of each KB to the target text through two

perspectives: domain correlation (σ ) and discriminative abil-
ity (Φ). Domain correlation denotes the correlation between a KB

and the target text corpus. Different from the L2T framework, we

define the discriminative ability as the ability of a source domain

instead of the ability of the target domain in the latent space. Intu-

itively, we cannot utilize all KBs to help the relation extraction task

in the target domain due to the risk of negative knowledge transfer.

Instead, according to the given text corpus, it will be more effective

to evaluate the discriminative ability of each KB and select a subset

for knowledge transfer.

4.1 Domain Correlation
Various correlation evaluation methods, such as Maximum Mean

Discrepancy (abbreviated to MMD) [13] and KL-Divergence [16],

have been proposed to evaluate the correlation or difference be-

tween the source domain and target domain. By mapping two

domains into the reproducing kernel Hilbert space (RKHS), MMD

empirically evaluates the distance between the mean of source ex-

amples and that of target examples. However, MMD relies on a

kernel function and a mapping function. The output of MMD may

not be stable if different kernel functions are used. Moreover, the

mapping function is usually non-linear and may lead to the local

minima. Inspired by distant supervision, we mainly measure the

domain correlation based on the entities that are overlapped in a

source KB and target corpus. Given the entity set ESi of a source
KB Si and the entity set E∗ extracted from the target text corpus,

ReTrans proposes to measure the domain correlation σ (Si , S
∗) as:

σ (Si , S∗) =
|ESi ∩ E∗ |

|E∗ |
, (6)

where | · | is the cardinality of a set.

4.2 Discriminative Ability
Now we are ready to measure the discriminative ability of a current

KB Si to the target S∗. Recall that we denote by X ∗
the candidate

entity pairs in the target text corpus, and by Y∗
the target relation

type set and by F the feature space of relation mentions.

As shown in Equation 1, given a target entity pair xt , ReTrans
aims to infer the true label yt of xt . In the traditional classifica-

tion problem setting, various models try to model the relationship

among label space, features and instances. The inference procedure

is usually based on the chain as: θyt → yt → ft → xt → θxt ,
where ft ∈ F ∗ represents the feature in the target feature space,

θxt and θyt are the models with respect to labels.

Given a feature set FS , entity pairs XS and the corresponding

labels YS in a source KB S , ReTrans formulates the discriminative

ability of S based on the assumption: θyt → yt → ys → fs →

ft → xt → θxt , where ys ∈ YS and fs ∈ FS . The classification
performance on T is still related to θX ∗ and θY∗ . The more dis-

similar between θyt with θxt are, the greater risk of inferring the

label of xt to yt . The key to this chain is that it utilizes the relation

space YS and the feature space FS to predict the relations in the

target corpus. We model θyt and θxt with the help of FS , greater
risk of inferring the label of xt to yt implies that less capability

of FS . Thus, we here propose to measure the capability ϕ(S,xt ,yt )
based on p(FS |θxt ) and p(FS |θyt ) as follows:

ϕ(S,xt ,yt ) ∝ −△(θyt ,θxt ) ∝ −DKL(p(FS |θyt )| |p(FS |θxt )), (7)

where △(θyt ,θxt ) denotes the dissimilarity △(θyt ,θxt ) between
θyt with θxt and DKL(·, ·) is the KL-Divergence that measure the

difference between two model spaces. The above equation indicates

that the more similar between θyt and θxt , the more helpful F for

classifying xt . The p(fs |θxt ) can be estimated as follows:

p(fs |θxt ) =

∫
F ∗

∫
X ∗

p(fs | ft )p(ft |x
′
t )p(x

′
t |θxt )dx

′
t dft , (8)

wherep(fs | ft ) can bemeasured by a translator functionφf ,p(ft |x
′
t )

can be easily estimated by feature representations we acquire in

Section 3 and p(x ′t |θxt ) is defined as a indicator function, such as

p(x ′t |θxt ) = 1 if x ′t = xt , otherwise p(x
′
t |θxt ) = 0. Furthermore, the

p(fs |θyt ) can be measured as follows:

p(fs |θyt ) =

∫
YS

∑
y′
t ∈Y

∗

p(fs |ys )p(ys |y
′
t )p(y

′
t |θyt )dys (9)

where p(fs |ys ) can also be estimated in the source feature space,

p(ys |y
′
t ) can be estimated based on the translator function φy , and

similar to p(x ′t |θxt ), p(y
′
t |θyt ) = 1 if y′t = yt , otherwise p(y

′
t |θyt ) =

0. Two translator function φf and φy are the key functions to esti-

mate the discriminative ability of a source KB. Firstly, we propose

to estimate φf as p(fs | ft ) =
p(fs ,ft )∫

Fs
p(f ′s ,ft )df ′s

, where feature-level co-

occurrence p(fs , ft ) is achieved by feature representations such

as p(fs , ft ) = 1 − normalize(d(fs , ft )), where d(fs , ft ) denotes co-
sine distance between vfs with vft since cosine distance is most

frequently used distance in embedding methods and normalize(·)
regular the distance to the range [0,1]. Now we propose to estimate

another translation function φy (p(ys |yt )) according to the relation
representations. Similarly, we propose to estimate φy as follows:

p(ys |yt ) =
p(ys ,yt )∑
ys p(ys ,yt )

. Note that relation translation φy provides

a way to solve the problem that KBs contain different surface names

for the same relation type such as “president_of” and “president”.

Now we ready to propose the discriminative ability of S :

Φ(S, S∗) =
∑

xt ∈X ∗

ϕ(S, xt , ȳt ), (10)

where ȳt = arg maxyt ∈Y∗ ϕ(s,xt ,yt ). For a instance xt , we only
consider the relation ȳt that S has themost high capabilityϕ(S,xt ,yt )
among Y∗

.

5 KB SELECTION AND TRANSLATION
5.1 Proper KBs Selection
We now aim to find those KBs that own large σ and high Φ si-

multaneously. Note that Φ ≤ 0 due to KL-Divergence is always

non-negative and σ ∈ [0, 1]. Because the objective function proba-

bly will be influenced by the large value of Φ, we have to balance

σ and Φ properly. Given a collection of source KBs S and a target

text corpus S∗
, ReTrans proposes to find a subset that achieves the

largest significance as follows:

S̄ = arg max

S̃ ⊂S

∑
S ′∈S̃ α1σ (S

′, S∗) + α2Φ(S
′, S∗)��S̃ �� , (11)
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where 0 ≤ σ ≤ 1, Φ ≤ 0, α1 and α2 are trade-off parameters to con-

trol the influence of domain correlation and discriminative ability.

Note that Φ is inversely proportional to △(θyt ,θxt ) according to

the Equaton 10.

A naive way of optimal KBs derivation is to perform the brute-

force traversal search. We calculate σ and Φ for every possible

subset. Then select the subset that achieves the largest significance.

However, the evident limitation for the naive selection is that the

size of the power set will incur tremendous time consumption. We

propose to evaluate the significance of each KB individually. The

KBs subset with the highest average significance is regarded to be

the most useful. As such, a set of existing KBs will be selected and

enrolled in our framework as the source domains.

5.2 KB Translation
Now we explain how perform domain-aware transfer learning to

help the relation extraction task on a given text corpus without

labeling data. Recall that ReTrans aims to estimate a hypothesis h∗

as accurately as possible in Equation 1. Given a target instance xt
and a target relation yt , we here denote the risk of assigning yt to
xt using the knowledge from S̄ as:

R(S̄,xt ,yt ) = E(LS̄ (xt ,yt )) =

∫
LS̄ (xt ,yt )dP(xt, yt),

where LS̄ (xt ,yt ) measures the loss of inferring the label of xt to
yt . Recall that we formulate two models θX ∗ and θY∗ previously,

which can be utilized to estimate the inference model based on a

collection of selected KBs S̄ . Here we implement these two models

to evaluate the R(S̄,xt ,yt ) in below equation as:

R(S̄, xt , yt ) =
∫
ΘY∗

∫
ΘX ∗

LS̄ (θY∗, θX ∗ )p(θY∗ |yt )p(θX ∗ |xt )dθX
∗θY∗

(12)

whereθY∗ only depends onyt andθX ∗ only depends onxt ,p(θY∗ |xt ,yt )
and p(θX ∗ |xt ,yt ) have been replaced by p(θY∗ |yt ) and p(θX ∗ |xt ),
respectively. Note that we cannot calculate Equation 12 since the

sizes of ΘX ∗ and ΘY∗ can be exponential. In this work, ReTrans

assumes there is no prior difference among all the classes and ap-

proximates R(S̄,xt ,yt ):

R(S̄, xt , yt ) ≈ LS̄ ( ˆθyt , ˆθxt )p( ˆθyt |yt )p( ˆθxt |xt ) ∝ LS̄ ( ˆθyt , ˆθxt ), (13)

where
ˆθyt = arg maxθyt p(θyt |yt ) and

ˆθxt = arg maxθxt p(θxt |xt ).

In this paper, ReTrans proposes that LS̄ (
ˆθyt ,

ˆθxt ) can be estimated

by domain correlation and discriminative ability. Previously, we

propose to evaluate the discriminative ability of KBs by measuring

the difference betweenθyt andθxt . The larger dissimilarity between

θyt with θxt , the greater the risk of inferring the relations. Also,

the more unrelated the KBs is, the higher the loss if we infer labels

based on those KBs, which corresponds to the following hypothesis:

Hypothesis 3 (Significance Loss). Given a target text corpus
C∗ and a collection of selected existing KBs S̄ , the larger significance
of S̄ , the lower loss of models θY∗ and θX ∗ that are trained with FS̄ ,
and the converse way also holds.

According to the above hypothesis, based on the significance of

KBs, the LS̄ (
ˆθyt ,

ˆθxt ) is defined as:

LS̄ (
ˆθyt ,

ˆθxt ) = [1−α1

∑
S ∈Ŝ (yt )

σ (S, S∗)��Ŝ(yt )�� ]−α2

∑
S ∈Ŝ (yt )

ϕ(S,xt ,yt )��Ŝ(yt )�� ,

(14)

where Ŝ(yt ) = {S ∈ S̄ | arg miny′
t ∈Y

∗ ϕ(S,xt ,y
′
t ) = yt }. Note that

the loss LS∗ (θY∗ ,θX ∗ ) is inversely proportional to significance and

discriminative ability.

5.3 Stability and Generalization Bounds
In this work, we will give the algorithmic stability and generaliza-

tion bound of Algorithm 1, which indicates that ReTrans is theoreti-

cally guaranteed in terms of stability and generalization. We further

discuss how existing KBs can influence a new KB construction.

In Section 3, we infer the representations of entities and rela-

tions by investigating the co-occurrence information in massive

text corpus and supervision of available KBs. In other words, all

entities and relations have been mapped into a latent space. Before

introducing the bound, we follow L2T [38] and make a hypothesis

as:

Hypothesis 4 (Existing KBs are Meta-Samples). All entities
and relations in existing KBs S = {S1, · · · , SK } as meta-samples are
drawn from a probability distribution DE (S).

An inference algorithm or classification model is a uniform β-
stable if the omission of a single training instance does not change

the loss of the returned hypothesis by more than β , for any data

point possible.

Definition 2 (Uniform β-stable). Given S = {S1, · · · , SN },
let S\i be same as S except that one of Si has been removed. For every
S\i , we have:

|Lemp (h∗, S ) − Lemp (h∗, S\i ) | ≤ β, (15)

where Lemp is empirical loss.

Many algorithms are stable and stable algorithms have simple

bounds on their estimation error [6]. In ReTrans, the change of the

loss in Equation (14) |LS̄ − LS̄ \i | can be easily verified to remain

stable after removing one KB. Thus, our algorithm h∗ is uniformly

stable. By generalizing A(S) to be ReTrans h∗, we give the general-
ization bound of h∗ according to theorems of meta learning [21].

Theorem 1. Given any set of existing KBs of S with size N drawn
the distributionDE (S) and δ > 0, the following generalization bound
holds with probability at least 1 − δ :

RS ≤ Lemp (h∗, S) +

√
ln (1/δ )

2N
+ 2β . (16)

Theorem 1 tells that as the number of existing KB increases,

ReTrans tends to produce a tighter generalization bound. Theo-

rem 1 guarantee the performance of ReTrans which can explore

current KBs and continuously improve the performance. It seems

that the KB selection work presented in Section 5.1 conflicts with

the intuition behind the Theorem 1. Note that models benefits from

extracting knowledge of more domains do not mean blindly learn-

ing from experience. Conversely, more domains represent more
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potential knowledge that can be used to transfer and enhance mod-

els. To deal with more domains, models have to filter negative

transfer which may badly affect the target task. Thus we propose

to select most useful KBs to filter the irrelevant KBs.

6 EXPERIMENTS
6.1 Datasets
In our experiment, we mainly utilize three public datasets from dif-

ferent resources:DBpedia [1],Wiki − KBP [18][10], andNYT [15][30].

We use the KBs from DBpedia as source KBs and train the model

on it, while we take Wiki-KBP and NYT as target KBs and evaluate

the model on it.

• Domain-specific source KBs In ReTrans framework, we assume

that there are a set of domain-specific KBs available. DBpedia pro-

vides sufficient KBs with hierarchical category information, i.e., the

KBs Game and Sports are part of the KB Activity. DBpedia provides

more than 50 primary categories and hundreds of secondary cate-

gories. We can treat DBpedia KBs in different secondary categories

as the domain-specific source KBs
1
.

• Target Text Corpus We evaluate our method in terms of the rela-

tion extraction performance on the given unstructured text corpus.

In the experiments, we utilize the text corpus associated with Wiki-

KBP and NYT in the target domain. Wiki-KBP contains 1.5 million

sentences that are sampled from almost 780,000 Wikipedia arti-

cles. In this paper, ReTrans employs Wiki-KBP as the given text

corpus and verify the performance on 14,000 manually annotated

sentences [10]. NYT [30] consists of 1.18 million sentences that are

sampled from almost 294,000 New York Times news articles from

the year 1987 to 2007. We evaluate the performance based on the

manually annotated data [15]. Note that we assume that only 10%

of training data in the target domain is available to train model.

6.2 Baselines and Evaluation Metrics
We compare ReTrans with both transfer learning methods and

relation extraction methods as follows.

• Transfer Learning Baselines As discussed before, from the perspec-

tives of transfer learning, this relation extraction task has different

label space between existing KBs and target corpus. Hence, we con-

sider TCA [25] and L2T [38]. TCA aims to minimize the difference

across domains by learning latent feature factors shared across

domains. L2T, the state-of-the-art multiple-domain transfer learn-

ing method, automatically determines what and how to transfer

by utilizing the previous transfer learning experience (i.e., single

domain transfer learning [3][28][12][19]). Note that the baselines

do not involve the KB evaluation and selection stage as ReTrans.

• Relation Extraction Baselines We also compare our method with

several relation extraction methods: CoType [29], MultiR [15] and

PCNNs [40]. CoType proposes to jointly learn the representations

of entities and relations with a distributional module and a pat-

tern module. MultiR improves the pure distant supervision method

and learns multi-instance multi-label to model both relational and

noisy data. PCNNs proposes to adopt the convolutional architecture

with max pooling to automatically learn latent features for relation

extraction.

1
Some KBs in primary categories do not have secondary categories. We use them

directly as the source KBs.

• Evaluation Metrics We mainly adopt four evaluation metrics to

measure the performance of various approaches: precision, recall,

f1 score, and improvement ratio. Performance on relation extraction

can be easily measured by the first three metrics. Improvement ratio

l is designed to measure the ability of transfer learning method,

which is defined as l =
pst

pt , where p
t
is the inference model per-

formance (e.g., accuracy) on the target domain without knowledge

transfer and pst is performance on the same target domain after

performing transfer learning.

• Experimental Settings Lexical features are important to mine the

similarity between entities and relations. In this work, we generate

text features following the work in [18]. The same kinds of features

were used in all the relation extraction comparison methods in the

experiment. In Section 5.3, we give the generalization bound of

our proposed method. Here we investigate how the number of KBs

influence the performance of ReTrans. Thus, we try different values

of K in the experiments.

6.3 Main Results
We first compare the performance of ReTrans and other baselines

methods on the relation extraction task. Table 2 shows the compar-

ison results as well as the improvement ratio of transfer learning

methods. Overall, our proposed framework ReTrans is quite stable

in terms of precision, recall and F1 score. ReTrans achieves higher

values than baseline methods over two datasets in terms of different

metrics. We report the best results that TCA achieves, but it seems

to be unsatisfactory. This is because TCA can only employ one KB

each time and cannot work well if the variance across domains is

quite large. Also, our method has the largest improvement ratio

compared with all the transfer learning methods. The intuition

of L2T, as a general transfer learning framework, is to utilize the

previous transfer learning experience. When the experience is not

available, it may encounter limited performance.

To evaluate the accuracy of the generalization bound of ReTrans,

we study the influence of the number of KBs that are utilized for

knowledge transfer. As shown in Table 2 (ReTrans10
, ReTrans15

,

ReTrans20
, ReTrans25

), for two target domains, the performance

of ReTrans increases consistently when a larger number of KBs are

explored. This illustrates the correctness of the bounds in Equa-

tion 16: as the number of selected KBs increases, ReTrans tends

to produce a tighter bound, which means that smaller risk during

knowledge transfer. Note that the optimal number of KBs we select

for Wiki-KBP and NYT is 26 and 29, respectively. Moreover, we

keep all ReTrans settings except KB selection inWKS − ReTrans50

andWKS − ReTrans75
. We can observe that the experimental re-

sults become worse when the number of selected KBs exceeds the

optimal value we calculate in Equation (11). That is because the

introduction of irrelevant KBs biases the translation across feature

spaces, which leads to unsatisfactory performance or even negative

transfer.

To demonstrate the effectiveness of our proposed selection crite-

rions: domain correlation σ and discriminative ability Φ, we also
study the influences of average σ and ϕ of given a set of selected

KBs S̄ . As shown in Figure 2, the performance of ReTrans increases

consistently when σ (ϕ) increases and ϕ (σ ) remains constant.
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Table 2: Performance comparison of relation extraction methods over two datasets.

Wiki-KBP NYT
Method Precision Recall F1 Score Improve_Ratio Precision Recall F1 Score Improve_Ratio
MultiR 0.25 0.207 0.226 N/A 0.293 0.305 0.299 N/A

PCNNs 0.176 0.365 0.237 N/A 0.301 0.501 0.376 N/A

CoType 0.307 0.371 0.336 N/A 0.388 0.470 0.425 N/A

TCA 0.04 0.12 0.060 - 0.105 0.183 0.133 -

L2T 0.258 0.352 0.298 1.030 0.373 0.438 0.403 1.030

ReTrans10 0.215 0.328 0.260 0.899 0.365 0.457 0.406 1.035

ReTrans15 0.254 0.352 0.295 1.021 0.382 0.469 0.421 1.074

ReTrans20 0.272 0.373 0.315 1.089 0.400 0.501 0.445 1.135

ReTrans25 0.289 0.412 0.340 1.175 0.413 0.488 0.447 1.14

WKS − ReTrans50 0.251 0.351 0.293 1.013 0.350 0.421 0.382 0.974

WKS − ReTrans75 0.248 0.356 0.292 1.010 0.381 0.408 0.394 1.005

Figure 2: Performance (precision, recall, F1 score and improvement ratio) changes of relation extraction with respect to σ ∈

{0.03, 0.06, 0.09, 0.12} and ϕ ∈ {−27.0,−9.0,−3.0,−1.0}, respectively. Note that, as shown in the legend (i.e., “WiKi-KBP-# and
NYT-#”), we conduct several σ and Φ settings in each experiment: ϕ = −1.2 in Wiki-KBP-1 and NYT-1, ϕ = −2.0 in Wiki-KBP-2
and NYT-2, σ = 0.11 in Wiki-KBP-3 and NYT-3, σ = 0.095 in Wiki-KBP-4 and NYT-4.

It is important to note that the above experimental results justify

the effectiveness of our method, showing that not only high related

KBs can be utilized to construct a new KB, but also the knowledge

from other KBs can benefit the relation extraction task. Though

sometimes even only low correlations exist among the source KBs

and the target text corpus, the existing KBs could still contain a

large amount of useful information to be utilized. What we do in

this paper is to delve such information and employ them to the

target task.

7 CONCLUSION
In this work, we present a novel relation extraction method ReTrans

to tackle scarce labeling problem in KBC, which utilizes the avail-

able KBs to boost the performance of relation extraction. We treat

relation mentions on numerous existing KBs as well as labeled data

and propose domain-aware transfer learning to transfer knowledge

from available KBs. More specifically, we first extract lexical fea-

tures from a massive text corpus and initialize representations of

the entity, relation and feature simultaneously by order proximity

method. Then we refine and infer the feature representations of

entities and relations with supervision information of correlation

between entities and relations in existing KBs. Among the large

amount of KBs, we propose to evaluate the significance of given

KBs to the target corpus by two perspectives: domain correlation

and discriminative ability. Then we select the most useful KBs from

numerous KBs. We formulate our domain-aware transfer learning

framework using risk minimization and present an approximation

method for estimation. The experimental results demonstrate that

our framework ReTrans can achieve outstanding performance by
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leveraging the knowledge from available KBs even though we have

few label data.
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A FEATURE LIST
In Section 3, we extract various lexical features from the text corpus

for representing the entity and relation mentions into low dimen-

sional space. The lexical features for both entities and relations are

summarized in Table 3.

Table 3: Summary of Text Feature List

Feature Description
The head token of each entity mention

Bag-of-words of each entity (or relation)

Words between two entities e and e ′

The combination of head words of e and e ′

Part-of-speech (POS) tag of words between two entity mentions

Left/right 3-word window of each entity (or relation) mentions

Entity Order: Whether e is before e ′

Entity Distance: #words between e and e ′

Unigrams before and after each entity (or relation)

B PSEUDO-CODE
For the sake of convenience, we summarize the proposed framework

ReTrans in Algorithm 1.

Algorithm 1 ReTrans Framework

Input: A text corpus C∗
, a target candidate entity pairs X ∗

, a

target relation type setY∗
and a set of existing domain-specific

knowledge bases S.

Output: An accurate model h∗ to infer true relations of X ∗
.

Representation Inference
1: for Si ∈ S do
2: Based on the Table 3, extract features FSi for entities ESi and

relations YSi from text corpus C∗
.

3: end for
4: Based on the Table 3, extract features F ∗ for entities E∗ in the

target domain.

5: Minimize Equation 4 to achieve the vector representation of

entities V̂E , relations ˆVY and features V̂F in the source and

target domains.

6: For relation mentions in ML , minimize the loss Lm in Equa-

tion 5 to achieve the refined representations VE , VR and VR .
KB Significance Evaluation

7: for Si ∈ S do
8: Count the number of entities that overlap between Si with

S∗ and calculate the domain correlation σ (Si , S
∗) with the

Equation 6.

9: With the help of VESi , VFSi and VYSi
, calculate the discrim-

inative ability Φ(Si , S
∗) according to the Equation 10.

10: end for
KBs Selection

11: Based on the domain correlation and discriminative ability,

select the set of KBs S̄ with the highest average significance by

solving the Equation 11.

KB Translation
12: Based on Equation 14 and Equation 1, ReTrans calculates the

risk and learn the hypothesis model h∗.
13: return Given xt ∈ X ∗

, h∗ infers the relation of xt .
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