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ABSTRACT
Transfer learning has gained increasing attention due to the infe-

rior performance of machine learning algorithms with insufficient

training data. Most of the previous homogeneous or heterogeneous

transfer learning works aim to learn a mapping function between

feature spaces based on the inherent correspondence across the

source and target domains or labeled instances. However, in many

real world applications, existing methods may not be robust when

the correspondence across domains is noisy or labeled instances

are not representative. In this paper, we develop a novel transfer

learning framework called Transfer Learning via Feature Isomor-
phism Discovery (abbreviated to TLFid), which owns high tolerance

for noisy correspondence between domains as well as scarce or

non-existing labeled instances. More specifically, we propose a fea-

ture isomorphism approach to discovering common substructures

across feature spaces and learning a feature mapping function from

the target domain to the source domain. We evaluate the perfor-

mance of TLFid on the cross-lingual sentiment classification tasks.

The results show that our method achieves significant improvement

in terms of accuracy compared with the state-of-the-art methods.

CCS CONCEPTS
• Computing methodologies→ Transfer learning; •Applied
computing → Document searching; • Information systems
→ Data mining;
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1 INTRODUCTION
Recently, due to the huge success of Alphago and other applications

such as Texas Poker games, machine learning has attracted great

attention in both academia and industry. However, the effectiveness

of machine learning algorithms typically depend on the availability

of labeled data. In the applications such as image classification and

many Natural Language Processing (NLP) tasks, people have to do

a large amount of repetitive work on labeling training data in a

particular domain. Sometimes it would be extremely hard to apply

machine learning techniques if it is impossible to collect enough

labeled training data [19]. In order to address this problem, transfer

learning has been widely adopted to transfer knowledge from a

source domain with labeled instances to a target domain with scarce

or even no labels.

Regardless of homogeneous or heterogeneous transfer learning,

most of previous efforts attempt to learn a feature mapping function

which is able to project features from the source domain onto the

target domain. In such away, labeled instances can be easilymapped

from the source domain to the target domain. In other words, the

source domain which has sufficient labeled data could be used to

train a classifier for the target domain. However, most existing

works of feature mapping either rely on the correspondence among

domains [6, 24] or labeled instances in both domains [8, 14]. When

there is noisy or even no correspondence between feature spaces,

prior methods based on the cross-domain correspondence may

encounter negative transfer effects. As for those works that learn

feature mapping functions from labeled instances, they assume

that instances are representative in both the source and target

domains. However, this assumption may not hold in real scenarios.

The performance of such algorithms can hardly be guaranteed due

to the fact that the labeled data might be biased. To be more specific,

the available labeled instances may fail to derive a feature mapping

function that reflects the true distribution of the feature space. This

problem will be further discussed in Section 3.

In the recent years, word embedding [17] has helped improve

the performance of many NLP tasks such as entity recognition

and sentiment analysis. Word embedding represents words from

the corpus to vectors of real numbers. In other words, it trans-

forms the representation of each word from one dimension space

to a continuous vector space. Consider the most famous example:

"queen ≈ kinд −man +woman"[17], where word embedding is ca-

pable of capturing both syntactic and semantic meanings of words
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in the vector space by exploring the correlation among words. In-

spired by the embedding methods, we tend to investigate whether

we can apply the embedding technique to represent the correlation

among features in one feature space. Note that our solution is not

limited to transfer learning over text-oriented tasks, but also works

for the image tasks by extracting image features and representing

each image by a sequential feature vector. As mentioned before,

in transfer learning tasks, feature spaces in different domains may

have low correspondence. But various feature spaces probably own

common feature structures, which means that some features may

have similar behaviors in their respective feature spaces, though

the distributions of different feature spaces may not be close to

each other.

Motivated by the above observations, we propose a novel transfer

learning framework named Transfer Learning via Feature Isomor-

phism Discovery (TLFid) which is robust, no matter whether there

is low correspondence across domains or there only exist scarce

labeled instances in the target domain. Specifically, the TLFid frame-

work consists of three major components: 1) extracting features

from source and target domains respectively, 2) learning a feature

mapping function across domains through discovering the common

feature structures, and 3) reconstructing feature representations to

build a target classifier effectively. The main contributions of our

work can be summarized as follows:

• We propose a novel transfer learning framework named TL-

Fid to explore the common feature structures in both source

and target domains based on the embedding techniques.

• TLFid is effective to learn the feature mapping function with

the help of feature subgraph isomorphism discovery, when

the feature spaces in the source and target domains have

noisy or low correspondence, or the target domain has few

labeled instances.

• We conduct experiments to verify the effectiveness of TLFid.

The results show that TLFid outperforms the state-of-the-art

methods on the cross-lingual text sentiment classification

task.

The remainder of the paper is organized as follows.We review the

relatedworks in Section 2.We present basic notions and the problem

definition in Section 3. After that, we describe the technical details

of TLFid in Section 4. In Section 5, we validate the effectiveness

of TLFid with extensive experiments. We conclude this paper and

discuss some future works in Section 6.

2 RELATEDWORK
Homogeneous transfer learning assumes that features in different

domains follow the same distribution. It is essential to make use of

high correspondence between two feature spaces. The self-taught

learning [22] tries to learn the latent feature factors from a source

domain and applies to a target domain directly. TCA [18] learns

the latent feature factors shared across domains with the objective

of minimizing the difference between domains.

Different from homogeneous transfer learning, heterogeneous

transfer learning aims to transfer knowledge between domains

with different feature spaces. HeMap [24] projected both source

and target instances into one latent space to preserve the origi-

nal structures of domains as much as possible and obtained small

distances between projections of instance features. However, this

approach requires the existence of strong correspondence in het-

erogeneous features across domains. TLRisk [6] built a feature

translator to transfer knowledge between different feature spaces

via minimizing risk of transfer. However, TLRisk may not be robust

when the translator is affected by the noisy correspondence among

heterogeneous features. In contrast to these correspondence based

methods, MMDT [14] does not require the correspondence between

domains. Instead, it requires the existence of sufficient labeled in-

stances in the target domain. HFA [8] was proposed to project both

domains into one latent space which is later augmented by the

original features. Nevertheless, HFA can only make use of the la-

beled examples without considering the large number of unlabeled

instances.

One recent work [26] proposed a method based on manifold

alignment, named heterogeneous domainAdaptationwithManifold

Alignment (DAMA). The key idea is to align different domains into

a latent space using label information or correspondence between

two domains. However, DAMA assumed that the correspondence

matrix between heterogeneous features across domains is binary

and cannot handle heterogeneous label spaces. In this paper, we

propose a feature isomorphism method to map features from the

target domain to the source domain, which performs well when

noisy correspondence exists across domains or scarce labels exist

in the target domain.

3 PROBLEM FORMULATION
In this section, we introduce some notations used throughout this

paper and formulate our problem.

We have labeled instances in the source domainS = {(xsi ,y
s
i )}

ℓs
i=1

and unlabeled data in the target domain T = {xti }
ℓt
i=1

. Suppose

that two collections of features Es = {es
1
, es

2
, · · · , esms

} and Et =

{et
1
, et

2
, · · · , etmt

} have been extracted from the source and target

domains respectively with the help of embedding methods. Each

input instance xs ∈ {xsi }
ℓs
i=1

or xt ∈ {xti }
ℓt
i=1

can be encoded into a

sequence vector in the feature space of Es or Et . We denote by s(·, ·)
the evaluation metric of feature similarity in a specific domain.

Definition 3.1 (Feature correlation matrix). Let C(E) ∈ Rm×m

be the correlation matrix based on the feature collection E =
{e1, · · · , em }, where the (i, j)th element of C(E) represents the fea-
ture similarity s(ei , ej ). Note that the feature correlation matrix is

symmetric: s(ei , ej ) = s(ej , ei ).

As discussed before, instead of mining the latent factor space

shared by two domains, we are interest in discovering similar fea-

tures which behave similarly in their own domains. After embed-

ding features in Es and Et into the vector spaces, we first compute

the similarities between pairwise features and then represent them

with two feature correlation matrices C(Es ) and C(Et ).

Definition 3.2 (Feature mapping). Given two feature sets Es and
Et where |Es | = |Et | = m, a feature mapping function π is a

bijective mapping such that π : {et
1
, · · · , etm } → {es

1
, · · · , esm }.

Now we are ready to discuss the idea of how a bijective feature

mapping function can benefit from the feature correlation matrix.

For ease of illustration, we first provide some examples. It is intuitive
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that we can map “attraktiv” in German to “attractive” by the shared

latent space which indicates the semantic meaning of words such

as π (“attraktiv”) = “attractive”. But such methods may not be

effective when the correspondence among domains are biased [28].

For instance, the word “马上” in Chinese has twomeanings: the first

meaning is “immediately” and the second meaning is “horseback”.

It is hard to know the exact meaning of this word due to various

possible feature spaces. But it can be easily distinguished if we

consider the relation of this word to other words in the same corpus

or same feature space. For example, there is a high possibility that

“马上” is related to “immediately” if “马上” has a positive correlation

with the word “急忙” (hurriedly).

Following the above discussion, the feature correlation matrix

has the potential to solve the problem when noisy correspondence

exists in two domains. Also, the function π will not be biased by

unrepresentative instances since we can obtain feature correlations

from the entire two domains and surpass the limitation of scarce la-

beled instances. Moreover, the performance and role of one feature,

i.e., one word may have subtle variance in different domains. For

instance, as the word “马上” with the meaning "horseback" only

appears in very limited Chinese classical writing corpus. In other

words, the bijective function is sufficient to map features from a

specific source domain to another domain. In general, we can uti-

lize such information of feature correlations to transfer knowledge

across domains. We next explain how to build the feature mapping

by pivoting feature correlation matrices.

Definition 3.3 (Permutation matrix). Given a feature mapping

function π between Es and Et , am ×m permutation matrix Pπ is

obtained by permuting the columns of the identity matrix Im . That

is, for each i , pi j = 1 if eti = π (esj ) and 0 otherwise.

Es =


1 0.8 0.9

0.8 1 −0.6

0.9 −0.6 1

 Et =


1 0.9 −0.6

0.9 1 0.8

−0.6 0.8 1


For sake of understanding, we give a simple example here to

illustrateC(E), π and Pπ . Suppose there are two feature correlation
matrices Es and Et as shown above, it is easy to know that there is

a permutation matrix Pπ :

Pπ =


0 0 1

1 0 0

0 1 0

 ,
where Et = Pπ EsP

T
π . Therefore, we can obtain a feature mapping

function π in the two-line form:

(
es

1
es

2
es

3

et
2

et
3

et
1

)
such as π (es

1
) = et

2
.

In practice, it is possible that we cannot find an appropriate π
that makes Ea equal to Pπ EbP

T
π exactly due to various feature distri-

butions. Also, we are not able to build a bijective mapping function

across the source and target domains when |Es | , |Et |. As men-

tioned before, some features or instances may not be representative

in a specific feature space. This leads us to only consider a part of

features in one domain. It is natural to come up with the idea to

only build the feature mapping function based on a common feature

structure across domains. Given Ẽs ⊂ Es and Ẽt ⊂ Et , TLFid aims

to learn such a mapping function π by solving the optimization

problem as follows:

arg min

π , Ẽs , Ẽt




PπC(Ẽt )PTπ −C(Ẽs )




F
,

s.t.|Ẽs | = |Ẽt | ≥ threshold,

(1)

where ∥·∥F denotes the Frobenius norm of matrix. Finally, with the

help of π , we can map source features into the target feature space

and train a model f∗ on S which performs well on T .

4 TRANSFER LEARNING VIA FEATURE
ISOMORPHISM DISCOVERY

An intuitive way to solve Equation 1 in Section 3 is to list all the

possible permutation matrices, but time complexity of the brute

force algorithm is O(n!). In this section, we propose to solve the

optimization problem by finding the feature subgraph isomorphism

across feature spaces. TLFid is based on the Graph Isomorphism that

can search the common feature subgraphs between two feature

correlation matrices and make use of the label information at the

same time.

4.1 Extracting Feature Correlation Matrix
One of the most important tasks in transfer learning is to con-

struct a good feature mapping function that is able to transfer most

useful knowledge from the source domain to the target domain.

Accordingly, before building feature mapping, the first step is to

extract feature representations that can reflect the true correlation

among features in their respective domains. Fortunately, various

feature extracting methods have been explored. For instance, scale-

invariant feature transform [15] was proposed to extract features

from images while every word can be represented naturally as a

feature in the text corpus.

Now we explain how to obtain feature correlation matrix with

the embedding methods. Recently, word embedding [2] has showed

great performance by representing words in corpus to vectors.

Not only word embedding benefits various NLP tasks, but it also

demonstrates high adaptability on the tasks associated with the

sequence data, e.g., node2vec [12] applies similar idea to clustering

tasks on graphs. Thanks to the success of exploring word semantics

achieved by word embedding, it is natural to reflect the inherent

correlation between features by considering each word as a unique

feature. We begin with a set of instances without labelsX = {xi }
n
i=1

and extract features E = {ei }
m
i=1

from one domain. Instead of just

using bag-of-word to encode instances, we represent each instance

xi to a variable-length sequence of tokens xi = (x1

i , · · · ,x
T
i ) where

x
j
i ∈ E for any j ∈ {1, · · · ,T }. We consider the feature set as a

corpus of words and take each sequence of instances as a sentence

in the text. Then, we can embed features on one domain into a

vector space and calculate correlations among the features.

In this work, we use cosine similarity as the evaluation metric of

feature similarities s(·, ·) since it is the most common metric used

in the word embedding methods to evaluate the similarity between

words [17]. After the embedding process, features are represented

into low dimensional vectors. Given two features ei and ej, their
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feature similarity (i.e., cosine similarity) is defined as:

s(ei, ej) =
ei · ej

∥ei∥


ej

 , (2)

where · represents the inner product in vector space and ∥·∥ is the

Euclidean norm. Note that, given Es and Et , we cannot evaluate the
similarity between esi ∈ Es and e

t
j ∈ Et because the two features

are represented into different feature spaces. The resulting cosine

similarity ranges from -1 to 1, which indicates whether two features

are related or not by telling us both the strength and direction of

the relationship between features. The closer the similarity are

to +1 and -1, the stronger the relationship between the features.

As for the relationship direction, s(u, v) > 0 indicates a positive

relationship, while s(u, v) < 0 indicates a negative relationship. The

vectors are independent of each other if s(u, v) = 0.

In many practical cases, using only positive or negative rela-

tionships is far from enough to describe the correlation among

features. Instead, we use the Frobenius norm of matrix as the loss

function in Equation 1. However, it is unnecessary to give too much

attention on exact similarities between feature correlation matri-

ces. Recall the example illustrated in Section 3. The relationship

between es
1
and es

2
is slightly different from that between es

1
and

es
3
because s(es

1
, es

2
) = 0.8 and s(es

1
, es

3
) = 0.9. But both s(es

1
, es

2
)

and s(es
1
, es

3
) are pretty close to +1 in terms of the strength of s(·, ·).

Given that the difference between Pearson’s correlation coefficients

and cosine similarity are negligible [9], we verbally describe the

strength of the cosine similarity as the guidance that Evans [10]

suggested: strong, moderate, weak and independent. Specifically,

we divide the similarity among features into 7 categories: strong

positive(3), moderate positive(2), weak positive(1), independent(0),

weak negative(-1), moderate negative(-2) and strong positive(-3),

which can simplify the problem of capturing the information of

feature correlations. The function Γ[(ei , ej )] that assigns the type
of feature similarity between ei and ej is defined as:

Γ[(ei , ej )] =



3, s(ei , ej ) > κs ,

2, κm < s(ei , ej ) ≤ κs ,

1, κw < s(ei , ej ) ≤ κm ,

0, −κw ≤ s(ei , ej ) ≤ κw ,

−1, −κm ≤ s(ei , ej ) < −κw ,

−2, −κs ≤ s(ei , ej ) < −κm ,

−3, s(ei , ej ) < −κs ,

(3)

where κs > κm > κw > 0. We will explain the choice of κs , κm and

κw in details later.

4.2 Feature Isomorphism Discovery
In this section, we describe the key step of TLFid that learns the

mapping function among features in different spaces based on the

feature isomorphism. Note that in Equation 1, the feature map-

ping task looks like a popular and effective step, Non-negative

Matrix Tri-factorization (NMTF), which tries to learn the mapping

function π by decomposing the feature correlation matrix C(Ẽt )
into three submatrices. However, Equation 1 is essentially differ-

ent from NMTF. Given C(Ẽs ) and C(Ẽt ), TLFid aims to learn π by

solve the permutation matrix Pπ . The permutation matrix is quite

different from the three submatrices in NMTF. It is a square binary

matrix that has exactly one entry of 1 in each row and each column

with zeros elsewhere. Before describing how to absorb experience

from Graph Isomorphism to solve this problem, we first give some

definitions and background knowledge [3].

Definition 4.1. A feature graph is a 4-tuple G = (E,C,Φ, Γ),
where

• E is a finite set of nodes, which represent features in a specific

domain

• C ⊂ E × E is the set of edges between features

• Φ is the label function that assigns labels to features

• Γ is the label function that assigns labels to edges

Note that, in the feature graph, an edge exists between ei and
ej if and only if Γ[(ei , ej )] , 0. Therefore, we transform the feature

correlation matrix into a feature graph where each node represents

a feature and the label of edge (ei , ej ) is defined as the type of the

feature correlation between ei and ej . As for Φ, there can be many

options to choose how to assign labels of features. For instance,

if we consider each word as one feature in the NLP tasks, Φ can

assign semantic meanings or the Part-of-Speech tagging to each

word. Notice that both extra labeled information of features and the

feature correlation can be incorporated in the TLFid framework.

Definition 4.2. Let G = (E,C,Φ, Γ) and G′ = (E ′,C′,Φ′, Γ′), be
two feature graphs; G′

is a feature subgraph of G, where G′ ⊂ G,

if

• E ′ ⊂ E

• C′ = C ∩ E ′ × E ′

• Φ′(e) = Φ(e) for all e ∈ E ′

• Γ′[(ei , ej )] = Γ[(ei , ej )] for all (ei , ej ) ∈ C′

Moreover, for Ẽs and Ẽt defined in Equation 1, we aim to find

the similar subsets over different feature sets. That is, given a graph

G = (E,C,Φ, Γ), it is prone to know that any subset E ′ ⊂ E

uniquely defines a feature subgraph.

Definition 4.3. Let G and G′
be two feature graphs. A feature

isomorphism between G and G′
is a bijective mapping function

π : E → E ′
, if

• Φ(e) = Φ′(π (e)) for all e ∈ E

• for any edge (ei , ej ) ∈ C there exists am edge (π (ei ),π (ej )) ∈
C′

such that Γ[(ei , ej )] = Γ′[(π (ei ),π (ej ))], and also for any

edge (π (ei ),π (ej )) there exists an edge (π−1(ei ),π
−1(ej )) ∈

C such that Γ[(ei , ej )] = Γ′[(π (ei ),π (ej ))]

Definition 4.4. Given a feature isomorphism π fromG1 toG2, and

a subgraph G1 of another feature graph G, π is called a subgraph

isomorphism from G2 to G.

Many existing transfer learning works are based on the labeled

instances to learn a feature mapping function. The performance of

these solutions is inferior when labeled instances are not represen-

tative. Similarly, we hope that the feature mapping function focuses

on the significant features which have the strongest correlations

with other features in their own domains. In this paper, given a

feature graph Gs in the source domain, we are interested in: ef-
ficiently querying the subgraph isomorphism π from Gs to
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Gt , where G
′
t is a subgraph of the feature graph Gt in the target

domain and π is the feature isomorphism from G′
t to Gs .

So far we have transformed the optimization problem in Equa-

tion 1 into a subgraph isomorphism problem, which is proved to be a

NP-Complete problem [4]. Fortunately, there exits several excellent

works to solve the subgraph isomorphism problem. Considering

that one domain may have many features (i.e., |E | is large), we em-

ploy VF2 [5], which is efficient to deal with subgraph isomorphism

in large graphs. Due to the space limit, we refer the readers to the

original paper [5] for the details of VF2.

4.3 Knowledge Transfer with Feature Mapping
Function

In this subsection, we describe how to transfer knowledge from

the source domain to the target domain based on the computed

bijective feature mapping function π .
Previously, the mapping function π can only perform a one-

to-one link between the features that are included in the feature

subgraph isomorphism across domains. However, as for the other

features, they may also have some useful information even when

they are not contained in the feature subgraph isomorphism. In

the presence of various feature spaces, it is natural that some struc-

tures of representative features are not shared with other domains.

Abandoning those features may result in a negative effect on the

final performance. Thus, we explain how to preserve such infor-

mation with the help of π . Given the source domain S and the

target domain T , we have extracted feature sets Es and Et from
two domains respectively and represent each feature into a latent

vector such that ei ⊂ Rns for ei ∈ Es and ej ⊂ Rnt for ej ∈ Et ,
where ns and nt are the dimensions of vector spaces for the source

and the target domains respectively. Suppose that, based on the

feature graph isomorphism, we have constructed a feature mapping

function π : Ēs → Ēt . It is easy to understand that we can utilize

Ēt to represent Ēs . However, mapping the remaining features in

the source domain that are not contained in Ēs is more complex

due to the difference in terms of the feature distribution across

domains. We define those features as the complementary features

Ecs . We solve the problem by optimizing the loss function with a

translation function as follows:

min

fs
L(fs ) =

∑
esi ∈Ēs

∑
esj ∈E

c
s

���s(esi , esj ) − s(π (esi ), fs (e
s
j ))

���2 , (4)

where s(·, ·) denotes the cosine similarity as defined in Equation 2.

Equation 4 aims to preserve the original feature similarities in the

source domain and minimize the similarity cost generated from

translating the source features to the target feature space. Generally,

manifold learning has proposed to identify the low dimensional

manifold structure of the given instances and preserve structures in

a low dimensional space, such as Isomap [25], locally linear embed-

dings [23] and Hessian eigenmapping [7]. In this work, we employ

one popular manifold learning method, t-distributed Stochastic

Neighbor Embedding (t-SNE) which is widely used for visualizing

high-dimensional data [16]. While t-SNE focuses on translating

features from one domain to another and preserving the origi-

nal relations among features, we extend it accordingly to perform

Algorithm 1 Transfer Learning via Feature Isomorphism Discov-

ery

Input: Source data S = {(xsi ,y
s
i )}

ℓs
i=1

and target data T = {xti }
ℓt
i=1

.

Output: A classifier f∗ that is trained on S, but well performs on

T .

1: procedure Extracting Feature Correlation Matrix

2: Extract features Es and Et from source and target

domains, respectively.

3: Apply word embedding to calculate the feature correlation

matrices C(Es ) and C(Et ) respectively.
4: end procedure
5: procedure Feature Isomorphism Discovery

6: Transform feature spaces on the source and target domain

into two feature graphs respectively.

7: Employ VF2 algorithm to find the feature mapping function

π .
8: end procedure
9: procedure Knowledge Transfer with Feature Mapping

Function

10: Apply manifold learning to construct a translator which

represents source features into the target feature space. And

train a classifier f∗ on S which performs well on T .

11: end procedure

knowledge transformation in the TLFid framework, the key steps

of which are summarized in Algorithm 1.

5 EXPERIMENTS
In this section, we conduct two experiments to evaluate the effec-

tiveness of the TLFid framework. In the first one, we perform and

evaluate the convergence of TLFid with different settings and pa-

rameter values. The second experiment compares TLFid with other

state-of-the-art transfer learning approaches. All the experiments

are performed using the cross-lingual tasks.

5.1 Data Description
In this work, we conduct cross-lingual sentiment classification, to

evaluate the performance of the TLFid framework on two bench-

mark datasets. First multi-lingual sentiment dataset [20] is written

in the four languages, English (EN), French (FR), German (GE) and

Japanese (JP), which contains reviews on three type of amazon

products: books (b), music (m) and DVDs (d). The reviews in each

language are split into three categories that 2000 reviews on training

set, 2000 reviews on test set and a unlabeled set which varies from

9,000 to 170,000 reviews. We additionally employ one Chinese emo-

tion corpus (R), RenCECps 1.0 [21], as the second sentiment dataset.

In terms of grammar and components, Chinese is quite different

from other phonography languages such as English, French and

German. Thus, we utilize Chinese corpus as the target domain due

to very low correspondence between ideograph with phonography.

RenCECps contains weblog posts with annotations of sentiment at

document, paragraph, and sentence levels. This dataset consists of

1487 documents, with 11,255 paragraphs, 35,096 sentences which

annotated for 3-way polarity: positive, neutral and negative. We

discard the data labeled as neutral since their polarity is ambiguous.
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In this paper, we consider that the reviews of each product in one

language are in a feature space. For the comprehensive comparisons,

we construct 12 cross-lingual sentiment classification tasks: EN_b-

R, EN_m-R, EN_d-R, FR_b-R, FR_m-R, FR_d-R, GE_b-R, GE_m-R,

GE_d-R, JP_b-R, JP_m-R and JP_d-R. For example, the task EN_m-R

utilizes the music reviews in English as the source domain and the

Chinese corpus in the RenCECps as the target domain data.

5.2 Data Preprocessing and Experimental
Settings

In this section, we explain some preprocessing works and analyze

how model settings affect the performance of the TLFid framework

in details. For convenience, we summarize the TLFid framework

as shown in Algorithm 1. In the first procedure, before extracting

feature correlation matrix, we utilize the TF-IDF to obtain 4987

most meaningful Chinese keywords from RenCECps. There exists

two ways to achieve embedding, CBOW and skip-gram. We here

use CBOW for embedding due to less running time and employ the

word2vec package [17] to represent words into vector spaces and

initiate the feature correlation matrices.

As discussed before, in the second step, TLFid assigns different

labels to features to boost the accuracy of feature isormorphism. In

this paper, we use Google Translator to annotate the Part-of-Speech

(POS) in each word. In other words, we use the POS of words as the

labels of features such as Φ(“people”) = “noun”. Moreover, TLFid

assigns different labels to the feature correlations as shown in the

Equation 3. We set different groups of thresholds κ = (κs ,κm ,κw )

to evaluate the accuracy of the TLFid framework. In addition, for

simplifying model, we do not set edge between the features ei with
ej in the feature graph when −κw ≤ s(ei , ej ) ≤ κw .

In the third step of the TLFid framework, since some repre-

sentative features may not be contained in the maximum feature

isomorphism, we represent the complementary features Ecs based

on Equation 4. To verify that the complementary features are useful

in the knowledge transfer, we also design an experiment to compare

the performance of TLFid with Simple-TLFid which only has first

two steps of the TLFid.

5.3 Baseline Methods
After representing features by word embedding, every instance on

both of source and target domains is represented with 2-dimensions

array. Thus, we configure a 3 layers Long Short-term memory

(LSTM) as the binary classifier. In this paper, we mainly compare

our model with other algorithms in two situations of the target

domain: no labeled instances in T and scarce labels.

5.3.1 Scarce-Label Baselines. In this paper, we compare TLFid

with the following four baselines for the scenarios that scarce labels

exist in the source domain:

• LSTM: It only utilizes labeled instances on the target do-

main to train a LSTM binary classifiers [13] where word

embedding is applied to preprocess the text data.

• LIBSVM: Given that LSTM may not work well on the small

dataset, we also employ another robust classifier, LIBSVM [1]

with linear kernels and default parameter settings. LIBSVM

only utilizes labeled instances on the target domain to train

a binary classifiers.

• DAMA_l: In this experiment, we define DAMA_l with the

same setting in the original work [14]. It aligns domains into

a latent space using label information between two domains.

• HFA: In this paper, we also employ the HFA [8] which was

designed to learn an augmented feature space only based on

the labeled examples.

• SSMC: SSMC [27] was proposed to explore the correspon-

dence between two languages by constructing a dual-language

document-term matrix. We build the semi-supervised matrix

for the corpus in the language on the source domain and

Chinese.

• DCI:DCI [11] aims to build term correspondence by deriving

term representations in the vector spaces.

5.3.2 Non-Label Baselines. In the situation that no labeled data

exists in the target domain, our proposedmethod TLFid is compared

with the following four baselines:

• DAMA_f: In this experiment, we adjust the DAMA’s input

from data instances to feature representations, Es and Et .
Also we define the matrix which represents the binary cor-

respondence in DAMA_f between features according to the

feature correlation we used in TLFid.

• SSMC: In the non-label experiments, we simplify the joint

optimization function presented in SSMC [27] by removing

prediction loss.

• HeMap: HeMap [24] projects data in two domains onto

latent space. In this case, we also take the feature repre-

sentations Es and Et as the input instead of data instances.

However, it cannot utilize any label information on target.

• HHTL: HHTL [28] proposed a deep-learning based method

to learn a feature mapping cross domains which can be ef-

fective based on the biased corresponding instances. Specifi-

cally, we replace corresponding instances with correspond-

ing words where Google translator built the correspondence

between cross-lingual words.

5.4 Main Results
Since the target data is balanced, we measure the classification

accuracy over all domains.

5.4.1 Evaluation on the TLFid Settings. As discussed in Equa-

tion 3, we divide the correlations among feature u with v into 7

categories, strong positive (s(ei , ej ) > κs ), moderate positive (κm <
s(ei , ej ) ≤ κs ), weak positive (κw < s(ei , ej ) ≤ κm ), independent

(−κw ≤ s(ei , ej ) ≤ κw ), weak negative (−κm ≤ s(ei , ej ) < −κw ),
moderate negative (−κs ≤ s(ei , ej ) < −κm ) and strong negative

(s(ei , ej ) < −κs ). In this subsection, we analyze how correlation

threshold κ influences the performance of TLFid (Figure 1). We set

four groups of threshold κ = (κs ,κm ,κw ): kappa1 = (0.7, 0.5, 0.3),

kappa2 = (0.6, 0.4, 0.2), kappa3 = (0.5, 0.3, 0.1) and kappa4 =

(0.45, 0.25, 0.05). Note that we do not set edges between indepen-

dent features in the feature graph for simplifying the model. More-

over, we also compare TLFid with three simplified TLFid frame-

works as follows:
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Figure 1: Classification accuracy of TLFid with four groups of κ: kappa1 = (0.7, 0.5, 0.3), kappa2 = (0.6, 0.4, 0.2), kappa3 =

(0.5, 0.3, 0.1) and kappa4 = (0.45, 0.25, 0.05).

• TLFid01: In the TLFid01 method, we take almost the same

step of the original TLFid except the label function of feature

correlation Γ. We only assign 3 labels to feature correlations

in TLFid01, positive (κw < s(ei , ej )), independent (−κw ≤

s(ei , ej ) ≤ κw ) and negative (κw < s(ei , ej )).
• Simple −TLFid : In this method, we take the same first two

step of the original TLFid. But Simple − TLFid does not

represent Ecs in the target domain and only train the classifier

based on those features in the Ēs .
• Simple −TLFid01: Based on the Simple −TLFid framework,

Simple −TLFid01 only considers three categories of feature

correlation as the same settings in the TLFid01.

As shown in Figure 1, we study the influence of different TLFid

frameworks to the overall performance on 12 knowledge transfer

tasks. The original TLFid performs more robust and much better

than other 3 simple TLFid frameworks. This is because that the

TLFid framework embed more knowledge of features on the both

domains. Not only TLFid can transfer features that are not con-

tained in the Ēs , but it is able to utilize more categories of feature

correlations. Moreover, we study the influence of the κ settings to

the overall TLFid framework. Nevertheless, we observe that the

best κ setting in various TLFid is (0.5, 0.3, 0.1) which achieves most

effectiveness in the cross-lingual sentiment classification. We also

employ this setting in the next two comparison experiments.
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Figure 2: Comparison results in terms of test accuracy (%)

5.4.2 Comparison Results. We test TLFid (with kappa3) and

other state-of-art methods on cross-lingual text classification with

two situations: 1) Scarce Labels. In this experiment, we study the

influence of the size of the labeled target instances ([10, 20, 30, 40])

to performance of the TLFid framework. From the results that are

reported in Figure 2, the performances increase when using a larger

the number of labeled target data. And the two baselines DAMA_l

and HFA generally achieve better classification accuracy than LSTM

and LIBSVM. Nevertheless, TLFid consistently outperforms other

baselines and achieves more stable improvement with increasing

size of labeled target data. 2) No Labels. To observe the ability

to discover or build correspondence for each method, all methods

are conducted without any labeled target instances. As shown in

Figure 3, generally, all methods outperform HeMap which heavily

relies on the strong correspondence among domains. Moreover,

our proposed method TLFid outperforms other baselines except for

several tasks.

Surprisingly, these results justify the effectiveness of the pro-

posed TLFid framework, which proves that the knowledge from

feature correlation benefits the transfer learning task. This is be-

cause that, when the low or noisy correspondence exists in two

domains, other methods utilize the annotated instances to build new

correspondence across domains. The performance of these methods

may be unsatisfactory if the labeled instances are not representative

in the target domain. In other words, these methods sometimes

cannot reveal the true correlation between two domains based on
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Figure 3: Non-Label cross-lingual sentiment analysis

the biased labeled instances. On the contrary, our proposed method

focuses on utilizing knowledge mined from feature correlations

among two entire feature spaces, which is not affected by labeled in-

stances. Furthermore, TLFid also benefits from the feature labelling

function which has potentials to exploit extra information.

6 CONCLUSION AND FUTUREWORK
In this work, we present a novel transfer learning method TLFid to

tackle the heterogeneous transfer learning problem, which utilizes

the feature isomorphism across domains and extra feature labeling

information to boost the performance of knowledge transfer. We

first build the feature mapping function by discovering the feature

subgraph isomorphism among different feature spaces. We then ex-

ploit the new representations of complementary features by using

the mined feature mapping function. We have conducted extensive

comparison experiments for two situations of the target domain:

unavailable labeled instances and scarce labeled instances. The com-

parison results demonstrate that our framework TLFid can improve

the performance of the cross-lingual sentiment classification tasks

by utilizing the correlation of features.

There are still several issues that have yet to be resolved. One dif-

ficulty is how to automatically interpret the correlation coefficients.

In this paper, we conduct empirical studies on the κ setting. It is

necessary to develop an effective algorithm for coefficient interpre-

tation. Furthermore, TLFid exploits extra information by using the

label function Φ. We may replace the feature labeling function with

co-occurrence data and extend this work to other transfer learning

tasks, such as text-aided image classification. We would like to

address these issues in the future work and expect this preliminary

work could shed light on new approaches to heterogeneous transfer

learning.
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