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Abstract—Recently, continual learning (CL) has attracted
much attention due to its widespread applications in the real
world. Given a set of data sets sequentially, continual learning
aims to achieve good performance on the new data sets while
avoiding deterioration in performance on the old data sets.
Despite the success, most CL models follow the supervised
setting, which limits their potential in data scarcity cases. Thus,
some pioneering works study unsupervised CL (UCL) to discuss
what CL tricks suit the unsupervised setting. However, their
advancements lack in-depth analysis of the characteristics of
UCL, especially the lack of attention to the use of old data.
We identify that using old data sets is essential for improving
the UCL model performance while existing works ignore them.
Unfortunately, given a limited data storage budget, it is a non-
trivial task to select representative data and effectively replay
them without label assistance. To further improve the UCL
performance, we present a new method in this paper, named
Effective Data Selection and Replay (EDSR) for UCL. Specifi-
cally, we analyze that entropy can be an effective data selection
metric, where representative data usually exhibit the highest
entropy in the representation space. Then, to balance the model
stability for old data and the plasticity for new data, we adopt
a strategy of replaying those stored representative data with
a noise-enhanced knowledge distillation process. The empirical
study demonstrates the outstanding performance of EDSR on
benchmark computer vision data sets. Especially, EDSR shows
strong resistance to forgetting old data knowledge while main-
taining high accuracy. The implementation is publicly available at
https://github.com/LeeJarvis996/edsr project/tree/main/EDSR.

Index Terms—continual learning, self-supervised learning, im-
age classification

I. INTRODUCTION

In recent years, continual learning has attracted increasing

attention due to its practical applications in many real-world

scenarios [1], [2]. Continual learning aims to continuously

learn new datasets while maintaining knowledge of old ones,

particularly when the old datasets are no longer accessible.

However, without access to the old datasets, the model can

become biased towards the new data and forget the old

knowledge, which is known as the Catastrophic Forgetting

problem [3]. For example, an autonomous driving system must

adapt to the changing driving environment. However, the past

driving environments can still influence the system, and thus

it needs continual learning to maintain its effectiveness in

both old and new environments. To alleviate this issue, many

promising methods have been proposed in recent decades [4]–

[20]. Among the different methods, storing and replaying old
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Fig. 1. An illustration of unsupervised continual learning (UCL) and
approaches to prevent forgetting. All the data sets are unlabeled.

data has been found to be the most effective [10], [11], [18],

[21]. This is because the old data can help the model retain

the knowledge of old tasks and alleviate the restrictions on

learning new data sets. However, due to the limited storage

capacity and practical constraints, there is usually a limit on

the number of stored data. Therefore, existing works mainly

develop two techniques: 1) Data selection: This involves
selecting representative data from the old data sets while

avoiding outliers or excessively similar data [10], [22], [23].

2) Data replay: This involves repeatedly replaying the stored
data to the model while avoiding overfitting to the stored data

and allowing flexibility for learning new data. [11], [14], [18].

Despite the success of continual learning, the mainstream

methods still follow the supervised setting, which requires a

large amount of labeled data that is difficult to obtain in real-

life situations. Unfortunately, many potential applications of

continual learning receive continuously incoming unlabeled

data after deploying the model. For instance, after a visual

robot is deployed, it needs to continually update itself with

new unlabeled images. To broaden the application scenarios

of continual learning methods, unsupervised continual learning

(UCL) is an important topic to explore. As illustrated in

Fig. 1, UCL models continuously learn from unlabeled new

data sets without accessing the old ones, and are expected to

perform well on all learned data sets. However, most existing

supervised continual learning (SCL) methods are no longer

applicable to the unsupervised setting [24], facing difficulties

in lacking label feedback and ineffectiveness.

Several unsupervised continual learning (UCL) methods

have been proposed to handle the unsupervised setting, which

can be broadly categorized into two types: VAE-based UCL

and CSSL-based UCL. VAE-based UCL methods such as
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VASE [25] and CURL [26] are built on Variational Au-

toencoders (VAE) [27]. They use VAE to generate old data

to prevent forgetting and expand the representation space to

accommodate new knowledge. However, due to the simple

structure of VAE, these methods show a significant drop

in performance on complex data sets [24], such as high-

resolution images. In recent years, contrastive self-supervised

learning (CSSL) [28]–[32] has emerged as a more powerful

unsupervised learning paradigm, showing its ability to learn

knowledge comparable to supervised learning. The core idea

of CSSL is to make representations of two augmented views

of the same input close to each other while keeping repre-

sentations from different images at a distance. Recent UCL

methods have been built on CSSL and have achieved better

performance, such as LUMP [24] and CaSSLe [33]. LUMP

[24] is the first method to introduce a CSSL loss to UCL.

It randomly selects data to store and replays them using the

mix-up trick [34], which corresponds to the select-replay path

in Fig. 1. CaSSLe [33] proposes a knowledge distillation

mechanism [35] to bring old knowledge from the past model

to the current one, which is the distillation path in Fig. 1.
Although CSSL-based UCL methods have achieved satis-

factory results, they hold a primitive attitude toward the usage

of old data. For instance, LUMP stores random old data, which

cannot exclude outliers or too-similar data. Additionally, mix-

ing old data with new data may result in unstable optimization

and hinders performance, despite its ability to prevent over-

fitting. Similarly, CaSSLe relies solely on the past model and

neglects old data. Because the model unavoidably loses old

knowledge when learning new data, CaSSLe is unsuitable

for learning longer incremental data sets. Intuitively, we may

improve these methods as long as we can better utilize the old

data. But towards the effective usage of the old data, there are

two critical challenges to solve. The first challenge is how to

select the representative data subset from the original data set

without label feedback. The second one is how to balance the

stability for the old knowledge and the plasticity for the new

knowledge while replaying the stored data to the model.
Regarding the above two challenges in exploring old data,

we design a novel method called Effective Data Selection and
Replay (EDSR) for unsupervised continual learning, which

is a strong integration of the two approaches in Fig. 1. To

select representative old data without the feedback from labels,

we first analyze that entropy is an effective evaluation metric

and theoretically explain how to reduce the problem into a

simple one for efficient optimization. To replay the stored data

more effectively, we adopt a strategy to replay the stored data

by distilling knowledge from the past model to the current

one. Additionally, we enhance the replaying effectiveness by

adding data-related noises to the data representations during

distillation. This technique enables the model to learn a more

diverse and general set of representations. As a result, the

updated model gains the flexibility to adjust the old represen-

tation space for learning the new data. The major contributions

of EDSR are summarized as follows:

• In this paper, we identify that the main reason hindering

TABLE I
SUMMARY ON IMPORTANT NOTATIONS

Notations Meanings
xi ∈ Xi The sample xi from the set Xi in i-th increment.

yi ∈ Y i The label yi from the set Y i in i-th increment.

M i M i ⊂ Xi is the memory set for selected data after
i-th increment, where |M i| < s.

xm∈⋃
iM

i The sample xm from the whole memory set.

n n specifically indexes the new data, xn ∈ Xn.

f̃(·), f̂(·) The model f(·) before and after learning Xn.

x ∈ R
d d-dimensional vector representation of x.

x1,x2 The representations of augmentations x1, x2 from x.

x̃, x̂ The representations of x extracted by f̃(·) and f̂(·)

the performance of existing unsupervised continual learning

models is insufficient exploration of old data sets. Therefore,

we present a novel method to effectively select and replay

old data for unsupervised continual learning, named EDSR.

• We solve the challenge of selecting representative data

subset without label feedback by proposing a novel entropy-

based data selection method.

• We address the stability-plasticity trade-off problem in data

replay by indirectly learning the stored data via distillation

and adding data-related noise to the data representation.

• Our empirical study demonstrates the outstanding perfor-
mance of EDSR on benchmark computer vision and tabular

datasets In particular, EDSR shows strong resistance to

forgetting old knowledge while maintaining high accuracy.

II. PRELIMINARY AND RELATED WORKS

In this section, we first introduce the contrastive self-

supervised learning in Sec. II-A, then introduce the supervised

and unsupervised continue learning in Sec. II-B. The important

notations in this paper are listed in Tab. I. Generally, we

denote the sample with lowercase characters (e.g., x) and the
set with uppercase characters (e.g., x ∈ X). Vector and matrix
are denoted with bold lowercase (e.g., x) and bold uppercase
A. The subscripts are for the functionality and the superscripts
indicate the source set.

A. Contrastive Self-Supervised Learning

In this paper, we mainly focus on training the model without

labeled data, i.e., unsupervised learning. In the past decades,

various promising approaches have been proposed to represent

data samples from unlabeled data sets, including Variational

Autoencoders (VAE) [27], Generative Adversarial Networks

(GAN) [36], and Contrastive Self-Supervised Learning (CSSL)

[37]. Among these approaches, CSSL has emerged as the

most effective approach [28]–[32], [38], [39]. CSSL aims to

make the representations of two positive samples close to each

other while pushing representations from negative ones away.

Given a set of training samples X , CSSL first selects one

sample x ∈ X and its negative version x− ∈ X , where x−

is regarded as different from x significantly (e.g., x and x−

belong to different class). Then, CSSL usually augments x into
different views x1 and x2, which are positive samples of x. Let
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x := f(x) denote the vector representation learned from the

CSSL model f(·). The core idea of CSSL is to maximize the
similarity between x1 and x2, while minimizing the similarity

between xj with x− (j is 1 or 2). Formally, the loss of a
CSSL model can be formulated as:

Lcss(x1,x2,x
−) = −Sim(x1,x2) + Sim(xj ,x

−), (1)

where Sim(·, ·) measures the similarity of two inputs, e.g.,
cosine similarity. As in Eq. (1), classic data augmentation

methods will more focus on how to create effective positive

samples x1 and x2, while CCSL models tend to design better

contrastive loss Lcss(·).
1) Data Augmentation for x1 and x2: The augmentation

is a function T (·;O) composed of a set of transformation
operations O [40]. Each operation o ∈ O transforms the

sample by a specific rule, and is parameterized by the pos-

sibility of being selected and the magnitude of transforma-

tion strength. For example, an example set of operations is

{cutout, rotate, flip, colorContrast, resize} ⊂ O [31], [38],

[41]. Supposing that the selected subset of operations is

Osub = {ok(·) : 1 ≤ k ≤ |Osub|} ⊂ O, then the augmentation
is to sequentially apply these operations to the sample x:

x(1) = o1(x), x(k) = ok(x(k−1)), ∀k ≤ |Osub|, (2)

and eventually xj = T (x;Osub) = x(|Osub|) (j ∈ {1, 2}). In
recent years, how to design an effective augmentation method

to boost the model performance becomes a hot topic [40],

[42]–[45]. However, this is not our focus and we use the same

augmentation methods as in SimSiam [31].

2) CSSL Loss Lcss(·): SimCLR [28] and MoCo [29] are the
first CSSL methods to achieve comparable unsupervised per-

formance to supervised learning, but they require large training

batches and significant run-time memory [31], which limits

their application. Recent CSSL methods, such as SimSiam

[31], BYOL [32], and BarlowTwins [38], simplify training

requirements by comparing only the representations from

positive samples x1,x2 and achieve state-of-the-art perfor-

mance. SimSiam [31] constructs its encoder network f(·)
with a convolutional neural network (CNN) model [46] and a

multi-layer perceptron (MLP) [47]. Different from the classic

formulation in Eq. (1) that directly compares x1 and x2, it

uses one representation to predict the other, i.e., predicting x2

based on x1 and vice versa. Following this idea, Simsiam adds

a representation-predictor h(·) to the encoder and its objective
is defined as:

Lcss(x1,x2) = −1

2
[Sim(h(x1), sg(x2))

+ Sim(h(x2), sg(x1))], (3)

where sg(·) is the stop gradient operation that blocks backward
propagation through the corresponding input and makes its

input a prediction target.

BarlowTwins [38] only uses the encoder network f(·). It
defines a cross-correlation matrix C ∈ R

d×d between repre-

sentations of two augmented views of the same input batch. It

strengthens the correlation between two augmentations of the

same input while reducing the correlation between different

inputs, which is achieved by making C an identity matrix.

The objective of BarlowTwins is defined as follows:

Lcss(x1,x2) =
d∑

α=1

(1−Cα,α)
2 + λ ·

d∑

α=1

∑

β

C2
α,β , (4)

where d is the dimension of the representation space, β ∈
{1, · · · , d}\α, λ is a weighting parameter, Batch is the batch

size, and Cα,β =
∑Batch

b=1 x
(b,α)
1 x

(b,β)
2√∑Batch

b=1 (x
(b,α)
1 )2

√∑Batch
b=1 (x

(b,β)
2 )2

is the sum

of all the similarities between the α dimension of x1 and the

β dimension of x2 in the batch.

B. Continual Learning

1) Supervised Continual Learning: Continual learning [1],
[2] aims to train a model that can learn a sequence of different

datasets, while optimizing on new data and preserving knowl-

edge of old data. It is similar to transfer learning [48]–[50] and

dynamic learning [51], [52], but has the unique requirement

of not accessing old data. Formally, the supervised continual

learning (SCL) problem is defined as:

Definition 1 (Supervised Continual Learning Problem):
Given a sequence of n datasets {(X1, Y 1), ..., (Xn, Y n)}, let
the models before and after learning the new data (Xn, Y n)
be denoted as f̃(·) and f̂(·), respectively. Then, the SCL
problem is to minimize the supervised objective on (Xn, Y n)
while maintaining the model’s performance on old data

{(Xi, Y i)}i<n:

f̂ = argmin
f

∑

(xn,yn)

Lsup(f(x
n), yn), (5)

s.t.,
∑

(xi,yi)

|Lsup(f̂(x
i),yi)−Lsup(f̃(x

i),yi)|≤δ, ∀i<n, (6)

where (xi, yi) ∈ (Xi, Y i), 1 ≤ i ≤ n, Lsup(·) is the
supervised learning loss, e.g., cross-entropy loss, and δ is the
error threshold for forgetting.

Through solving Def. 1, SCL aims to optimize the perfor-

mance of the new model f̂(·) on the new data (Xn, Y n),
while guaranteeing its effectiveness on the old data to be

within an error bar δ compared with the old model f̃(·).
However, the old data sets are inaccessible during the learning

of Xn under the continual setting. Thus, the constraint in

Eq. (6) cannot be satisfied directly, which results in the

Catastrophic Forgetting problem. To address this problem,

several categories of continual learning methods have been

proposed, including regularization-based, model adaptation,

and memory-based methods. Regularization-based methods

[16]–[19], [21], [53]–[55] restrict the parameter change during

learning Xn to prevent forgetting. Model adaptation methods

[4], [7]–[9], [20], [56]–[58] use extra parameters to accom-

modate increasingly more knowledge, while memory-based

methods [10]–[14], [59], [60] first store or generate old data,

then review them to reduce forgetting. Among these three

categories, memory-based methods generally achieve the best

performance. This shows that the old data is the strongest
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anchor for recovering the old knowledge. Besides, the methods

using knowledge distillation [35] techniques have achieved

success [10], [16], [18], [19], [21], [55], [58], [60] by

transferring the old knowledge from a past model to the current

one. The medium of distillation can be the prediction [16],

[55], feature [21], [60], or model parameters [19].

2) Unsupervised Continual Learning: In the unsupervised
setting, labels are absent for input data and the data sets

become {X1, ..., Xn}. This makes most SCL methods no

longer applicable, especially for those SCL methods relying

on memory. Because without label feedback, it is challenging

to identify representative data and reuse them. For example,

iCarl [10] requires the mean prediction of each label to

select important data, while GEM [11] relies on the gradients

from old classes to redirect those from new classes to avoid

forgetting. It has also been studied that SCL methods may face

the performance collapse issue when adapted to unsupervised

cases [24], [33].

In this subsection, we mainly discuss the CSSL-based UCL

as it is the most effective unsupervised continual learning

method. When the data label y is unavailable, CSSL-based
UCL proposes to replace the supervised loss Lsup(·) in Eq. (5)
and Eq. (6) by the CSSL loss Lcss(·). For simplicity,

xi := f(xi) is the representation of xi ∈ Xi. Besides, x̂i
j

and x̃i
j , j ∈ {1, 2}, are the representations extracted by f̂(·)

and f̃(·). The UCL problem is formally formulated as:

Definition 2 (Unsupervised Continual Learning Problem):
Given a sequence of n unlabeled datasets {X1, ..., Xn}, let
the models before and after learning Xn be denoted as f̃(·)
and f̂(·), respectively. Then, the CSSL-based UCL problem
aims to minimize the contrastive self-supervised objective on

the new data Xn while maintaining the model’s performance

on old data {Xi}i<n:

f̂ = argmin
f

∑

xn

Lcss(x
n
1 ,x

n
2 ), (7)

s.t.,
∑

xi

|Lcss(x̂
i
1, x̂

i
2)−Lcss(x̃

i
1, x̃

i
2)| ≤ δ, ∀i < n, (8)

where xi ∈ Xi, i ≤ n, Lcss(·) is the CSSL loss, and δ is the
error threshold for forgetting.

Upon solving Def. 2, CSSL-based UCL uses Lcss(·) to
learn Xn in Eq. (7) and maintain the old knowledge in

Eq. (8) without acquiring label information. However, it is

still hard to guarantee the error bar δ under this unsupervised
setting, which requires the UCL methods to devise novel

approaches for continual learning. Currently, several CSSL-

based UCL methods have been proposed, including memory-

based methods LUMP [24] and Lin et al. [61], regularization-

based methods CaSSLe [33] and PFR [62]. LUMP maintains

one fixed memory buffer M that stores randomly selected

old data. When learning a sample xn ∈ Xn of new data,

LUMP draws a stored old data xm ∈ M from memory and

synthesizes an input x̄n by mixing xn up with xm, which is

formulated as x̄n = ωxn+(1−ω)xm, ω ∈ (0, 1). Afterwards,
LUMP sends x̄n into Lcss(·), which gives Lcss(x̄

n
1 , x̄

n
2 ), to

solve Def. 2. In such a way, the forgetting issue is eased by

simultaneously learning both old and new data. Lin et al.

store data based on k-means and maintain the representation

distances between stored and new data to prevent forgetting.

However, both methods lack theoretical analysis of how the

stored data can be representative.

For regularization-based methods, PFR and CaSSLe design

a knowledge distillation [35] loss Ldis(·) based on Lcss(·).
The mechanism of knowledge distillation is that, given the

same input data, align the outputs from the current model f(·)
and the old model f̃(·) to transfer the old knowledge from
f̃(·) to f(·) and prevent forgetting. When based on Lcss(·),
however, direct alignment is ineffective due to the high-

dimensional representation space. So that before alignment,

both methods add a projector pdis(·) that projects the output
from the current representation space to the old one in order

to improve the effectiveness. Formally, Ldis(·) is defined as:
Ldis(x

n
1 , x̃

n
1 ) = Lcss(pdis(x

n
1 ), x̃

n
1 ), (9)

where the concrete definition of Ldis(·) varies with different
Lcss(·). From Eq. (9), given an augmented input xn

1 , x
n
1 is

first projected to the old representation space by pdis(·), then
aligned with x̃n

1 to transfer knowledge from f̃(·) to f(·). In
practice, Ldis(x

n
2 , x̃

n
2 ) is also added to distillation process.

Besides the aforementioned methods, there are also works

[63], [64] focusing on online UCL, where the inputs are an

unlabeled data stream. Our setting is different from this stream

setting by that, ours receives datasets, and each dataset can be

repeatedly learned until optimization.

III. METHODS

As discussed in Sec. I and Sec. II, accessing and reusing the

old data is of great importance to continual learning, and many

SCL methods achieve success through designing effective

data selection and replay mechanisms. However, existing UCL

works tend to ignore storing and replaying old data with an

effective way. Therefore, our method EDSR will bring up this

gap. When concerning about data selection and replay, the

UCL problem definition is transformed as follows:

Definition 3 (EDSR’s UCL Problem): Given a sequence of
n unlabeled datasets {X1, ..., Xn}, suppose that some data
samples {M i

∗}i<n have been stored from {Xi}i<n, as old data

{Xi}i<n is unavailable for learning Xn under the setting of

continual learning. Let the models before and after learning

Xn be denoted as f̃(·) and f̂(·), respectively. Then, EDSR’s
UCL Problem aims to train the model on the data {M i

∗}i<n

and Xn to maximize its performance on all n data increments,
and select informative data subsets Mn

∗ ⊂ Xn for next

increment. The problem is formally formulated as follows:

(1) f̂=argmin
f̃

∑

xn

Lcss(x
n
1 ,x

n
2 )+

∑

xm

Lrpl(x
m
1 ,xm

2 ), (10)

(2) Mn
∗ = arg max

Mn⊂Xn,|Mn|≤s
inf(Xn,Mn), (11)

where the new data sample xn is from the new data increment

Xn, the sample xm is from the past memorized data {M i
∗}i<n,
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Lcss(·) is the contrastive self-supervised objective for learning
new data, Lrpl(·) is the replay objective for learning stored
data, inf(·, ·) calculates the information of Xn contained in

Mn, and s is the memory budget.
Upon solving Def. 3, EDSR tries to address the UCL prob-

lem in two steps. First, training the model f̃ by constrasting
the new data xn ∈ Xn with the contrastive loss Lcss(·) and
replaying the stored data xm ∈ {M i

∗}i<n with the replay loss

Lrpl(·). Second, EDSR assumes that the more information of
{Xi}i<n contained in {M i

∗}i<n, the better performance the

model achieves through replaying them. Thus, Mn
∗ ⊂ Xn is

selected for next data increment.

Due to the absence of labels, effective data selection in

Eq. (11) and data replay in Eq. (10) are both non-trivial

tasks. Thus, in Sec. III-A, we introduce an entropy-based data

selection method with theoretical validation to address the data

selection challenge. Then, in Sec. III-B, we propose to replay

the data through noise-enhanced distillation to solve the data

replay challenge. Finally, the model framework is presented

in Sec. III-C.

A. Entropy-Based Data Selection

In this subsection, we build up our data selection method

for the UCL problem. As reflected in Eq. (11), after learning

new data Xn, the goal of data selection is to identify the

most informative subsetMn fromXn under a limited memory

budget s, with the expectation that Mn can contain as much

knowledge about Xn as possible. From the perspective of

information theory [65], it indicates that maximizing the

mutual information between Mn and Xn. By noting the

mutual information as MI(·), the objective of data selection
in Eq. (11) is transformed as follows:

Mn
∗ = arg max

Mn⊂Xn,|Mn|≤s
MI(Xn,Mn), (12)

where s is the memory budget.
However, it is hard to optimize Eq. (12) directly, since

it is discrete optimization with constraint and the searching

complexity of Mn is O(|Xn|!/(s!(|Xn| − s)!). To solve this
issue, we first transform MI(Xn,Mn) as MI(Xn,Mn) =
H(Mn)−H(Mn|Xn) [65], where H(·) denotes the entropy.
Since Mn is a subset of Xn, H(Mn|Xn) = 0. Thus,
maximizing the mutual information in Eq. (12) is equivalent

to maximize H(Mn):

Mn
∗ = arg max

Mn⊂Xn,|Mn|≤s
H(Mn). (13)

Intuitively, entropy maximization can be achieved by selecting

distant data in the representation space, as distant representa-

tions reflect dissimilar images. However, such a heuristic has

no guarantee on the effectiveness. The better approach is to

obtain an entropy estimation function. Unfortunately, because

Xn has only limited samples, directly using it to estimate the

entropy distribution of Xn’s input space is hard.

In this paper, we propose to use the lossy coding length [65]

to evaluate the entropy of the input data. Lossy coding length

describes the minimal number of bits that are needed to fully

encode the data. The higher entropy the data has, the more

encoding bits are required. So that we can maximize Eq. (13)

by finding Mn that require largest lossy coding length. Be-

cause the representation consolidates the information of its

input data and implicitly contains the label knowledge, we

will use the lossy coding length of the representations of Mn

to evaluate this length more effectively. Let M̂n := f̂(Mn) be
the representations extracted fromMn by the model optimized

on Xn. Then as suggested in [66], [67], the entropy of Mn

is defined as follows:

H(Mn) =
|Mn|+ d

2
log · det(I|Mn| +

d

|Mn|ε2Cov(M̂n)),

where I|Mn| is the identity matrix of dimension |Mn|×|Mn|,
d is the representation dimension, det(·) calculates the deter-
minant of a matrix, Cov(A) = ATA, and ε is the decoding
error of transforming the representation into bits. From the

equation, the entropy of Mn is proportional to the magnitude

of representation covariance, which is intuitive since a higher

covariance means a larger chaos. Because d, ε, and |Mn|,
are constants, the maximization of entropy in Eq. (13) is

equivalent to optimize the variable Cov(M̂n). But it is still
hard to maximize the determinant of a covariance matrix

det(I|Mn| + d
|Mn|ε2Cov(M̂n)), which requires us to further

simplify this formulation.

Recall that in matrix analysis, the determinant has an identi-

cal equation that replaces itself with a simple trace calculation

Tr(·), that is det · exp(A) = exp ·Tr(A) [68]. We reformu-
late this identical equation as det(A) = exp ·Tr · log(A)
and use it to do the simplification. By using abbreviations

μMn = |Mn|+d
2 and λMn = d

|Mn|ε2 , the simplification process
is as follows:

H(Mn) = μMn log · det(I|Mn| + λMnCov(M̂n))

= μMn log · exp ·Tr · log(I|Mn| + λMnCov(M̂n))

= μMnTr · log(I|Mn| + λMnCov(M̂n))

∝ μMnTr(I|Mn| + λMnCov(M̂n))

∝ Tr(Cov(M̂n)), (14)

where the constants μMn , λMn and I|Mn| are omitted in
Eq. (14) without affecting the results. Finally, we can optimize

the following objective to select representative data:

Mn
∗ = arg max

Mn⊂Xn,|Mn|≤s
Tr(Cov(M̂n)). (15)

Since the trace of a covariance matrix is the sum of its

singular values, Tr(Cov(M̂′)) < Tr(Cov(M̂′′)), ∀M ′ ⊂ M ′′,
where M ′ and M ′′ are two random memory sets. Thus, the

representations of Xn, X̂n := f̂(Xn), has the largest entropy,
and maximizing Eq. (15) is equivalent to finding a subset from

M̂n that maintains the highest singular values. Intuitively,

based on the meaning of singular values, Eq. (15) means

that the most representative data subset is the one that can

best reconstruct the representation space of the original data.

This equivalence also satisfies our original goal of maximizing

the mutual information between Mn and Xn. In practice, we
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maximize the sum of singular values of M̂n via Principal

Component Analysis [69].

B. Noise-Enhanced Data Replay

In this subsection, we introduce how we construct the

data replay loss Lrpl(·) in Eq. (10). To achieve an effective
data replay, the two major concerns are the stability for the

old data and the plasticity for the new data. Naively, the

stored data {M i}i<n can be directly replayed via Lcss(·).
However, this replay method leads to the over-fitting issue

and addresses neither of the above concerns. Because Lcss(·)
requires abundant samples from the same class to learn effec-

tive representations, which the limited samples in {M i}i<n

cannot satisfy. Recently, there are several SCL methods [23],

[70] adapting CSSL techniques to continual learning, for

example PASS [23] replays the prototypes of each class with

augmentation. Unfortunately, these methods rely on the label

feedback and thus are unsuitable for the unsupervised setting.

Therefore, we propose a noise-enhanced data replay loss

Lrpl(·) to better strike the balance between stability and

plasticity when replaying the limited and unlabeled mem-

ory. To avoid the over-fitting issue mentioned above, Lrpl(·)
replays the old data via knowledge distillation. Recall that

the distillation process is to transfer the old knowledge from

the old model f̃(·) to the current model f(·) via aligning
their outputs on the same input. During this process, f̃(·) is
the major source of old knowledge, and the stored data act

as the media of knowledge transfer. So that the quantity of

stored data can hardly cause negative effect. Lrpl(·) uses the
same distillation mechanism as CaSSLe for its state-of-the-art

performance.

Besides replaying via distillation, we also propose to add

representation-level noises to each sample in the memory

during replay, in order to enlarge the transferable old knowl-

edge. This intuition is inspired from the current research

that similar samples will have overlapping representations

after augmentation [71]. Introducing a perturbation to the

representation of a sample can thus relate it to its similar

neighbors and broaden the learnable representation space. In

particular, this representation-level noise is a d dimensional
vector σ following standard normal distribution and has a data-
dependent magnitude r(xm). Without loss of generality, we
demonstrate the calculation of r(xm) after selectingMn

∗ from
Xn. For xm ∈ Mn

∗ , r(x
m) is the standard deviation of the

representations among the k nearest neighbors (kNN) of xm

from Xn. r(xm) is defined as follows:

r(xm) = Std({x̂′ : x′ ∈ Nei(xm|Xn)}),

where Nei(xm|Xn) is the kNN of xm inXn, Std(·) calculates
the standard deviation of the representations and x̂′ is extracted
by the model f̂(·) optimized on Xn. This data-dependent

magnitude r(xm) helps scale the noise to a meaningful range.
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Fig. 2. The framework of EDSR. At the training stage, the model learns
Xn with Lcss(·) and Ldis(·), and replays {M i∗}i<n with Lrpl(·). After
learning Xn, Mn∗ ⊂ Xn is selected based on entropy and stored.

After adding the noise r(xm) ·σ to the distillation process,

Lrpl(·) is formulated as follows:
Lrpl(x

m
1 , x̃m

1 |r(xm)) = Ldis(x
m
1 , x̃m

1 + r(xm) · σ) (16)

= Lcss(pdis(x
m
1 ), x̃m

1 + r(xm) · σ),
where xm is augmented to xm

1 and x̃m
1 is the representation

extracted by the old model f̃(·) before learning Xn. During

distillation, xm
1 is aligned with x̃m

1 + r(xm) ·σ, whose noise-
enhanced old knowledge is thus distilled into the new model.

Lrpl(·) strikes a good balance between stability and plastic-
ity, because noise-enhanced distillation revokes abundant old

knowledge for the model stability, while the noise itself also

allows the model plasticity for new knowledge.

C. Framework

After introducing how we store representative data in Sec.

III-A and how we replay them in Sec. III-B, we now show

the integrated framework of our method, EDSR, in Fig. 2.

The framework contains two stages, the training stage and the

selecting stage.

1) Training Stage: When training the model on the new
stage n, f(·) is optimized simultaneously on Xn and

{M i
∗}i<n. For X

n, Lcss(·) is applied to acquire new knowl-

edge and Ldis(·) to assist forgetting prevention. On the other
hand, {M i

∗}i<n is solely trained on Lrpl(·) to further recover
the old knowledge while enabling plasticity for new knowl-

edge. The final objective of our model is defined as follows,

L(Xn,
⋃

i<n

M i
∗) =

∑

xn

Lcss(x
n
1 ,x

n
2 )

+
∑

xn

1

2
(Ldis(x

n
1 , x̃

n
1 ) + Ldis(x

n
2 , x̃

n
2 ))

+
∑

xm

1

2
Lrpl(x

m
1 , x̃m

1 |r(xm)),

where xn ∈ Xn and xm ∈ ⋃
i<n M

i
∗.

2) Selecting Stage.: After optimization on Xn, the model

enters the selecting stage. At this stage, X̂n is first extracted

by f̂(·) on Xn, during which Xn are not augmented. Then we

select s data that maintain the highest singular values of X̂n

and form Mn
∗ . Finally, we update the memory to {M i

∗}i≤n.
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TABLE II
DATA SET SUMMARY. Positive Rate IS THE RATIO OF TABULAR DATA WITH

POSITIVE CLASSES.

Image
Data

Name #Train data #Test data #Classes Image size
CIFAR-10 50,000 10,000 10 32*32
CIFAR-100 50,000 10,000 100 32*32
Tiny-ImageNet 50,000 10,000 100 64*64
DomainNet-real 120,906 52,041 345 64*64

Tabular
Data

Name Size #Input dim. #Classes Positive ratio
Bank 45,211 16 2 11.70%

Shoppers 12,330 17 2 15.47%
Income 32,561 14 2 24.08%
BlastChar 7,043 20 2 26.54%
Shrutime 10,000 10 2 20.37%

IV. EXPERIMENTS

A. Experiment Setup

1) Data Sets: We adopt image data and tabular data to
evaluate existing works and EDSR. The data set summary is

in Tab. II and the details are as follows.

Image Data. Four benchmark data sets are selected for
our main experiments, which are CIFAR-10 [72], CIFAR-100

[72], Tiny-ImageNet [73] and DomainNet-real [74]. Images

of CIFAR-10 and CIFAR-100 have 32×32 pixels, while those
of Tiny-ImageNet and DomainNet-real are unified to 64×64
pixels. CIFAR-10 has 10 classes, each class has 5,000 training

samples and 1,000 testing samples. CIFAR-100 and Tiny-

ImageNet have 100 classes, each class has 500 training sam-

ples and 100 testing samples. DomainNet-real is a subset of

DomainNet with only real images, which has 345 classes and

in total 120,906 training samples and 52,041 testing samples.

Tabular Data. Five tabular data sets are selected to show
our method effectiveness on tabular data, whose statistics are

shown in Tab. II and sources listed in [20]. These data sets

are concerned about binary person-characteristic classification.

We randomly split 20% of each data set as their test set.

2) Task Description: As shown in Fig. 1, the continual

learning model will be trained and evaluated on a sequence of

data sets. We divide the data sets in Tab. II into several subsets,

where each subset contains multiple unique classes. CIFAR-

10 is divided into 5 subsets of 2 unique classes. CIFAR-100

and Tiny-ImageNet are divided into 20 subsets of 5 unique

classes. DomainNet-real is divided into 15 subsets of 23

unique classes. The five tabular data sets form a sequence

of 5 increments. Under the continual learning setting, when

learning the new data increment Xn, only Xn with the stored

data {M i
∗}i<n are fed into the model, i.e., old data {Xi}i<n

are unavailable. Then, the model f̂ after learning Xn will be

tested on all n data increments {Xi}ni=1.

3) Evaluation Metrics: After learning the sequence of n
data sets {Xi}i≤n, this performance is recorded in an accuracy

matrix A and a forgetting matrix F, which are indicated in
Fig. 3. Each element Ai,j ∈ A is the test accuracy on the

old data Xj after learning a new data set Xi, where j ≤ i.
Following this definition, the elements Ai,j whose j > i are
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Fig. 3. An The accuracy matrix A and an illustration for the metrics.

meaningless and ignored. After learning Xi, Acci is averaged
on the accuracy of learned data sets {Xj}j≤i:

Acci =
1

i

∑

j≤i

Ai,j . (17)

To intuitively reflect the forgetting issue of UCL models,

we can calculate Fi,j = maxi′≤i(Ai′ ,j −Ai,j) to evaluate the
accuracy decrease on the old data set Xj after learning the

new data set Xi. A smaller Fi,j means that the knowledge

from old Xj is less forgotten after learning the new Xi, thus

is better. Naturally, Fi,i = 0 for any i since the model will not
forget Xi after learning X

i. Similar to Acci, Fgti is averaged
on the accuracy decrease of old data sets {Xj}j<i:

Fgti =
1

i− 1

∑

j<i

Fi,j , (18)

where Fi,i is excluded from average as it is always 0. In

the following experiments, without specification, we simplify

Accn as Acc and Fgtn as Fgt, where n is the number of

subsets of the chosen benchmark data set.

Inheriting the meaning from A and F, the better perfor-
mance means a higher Acc and a lower Fgt. When presenting
the results, we use Bold to note the best results and use
Underline to note the second best.

4) Baselines: We compare our method with the following
state of the art baselines. Because the unsupervised setting,

those SCL methods [10], [11], [22], [23] that strictly require

labels are excluded from comparison. From the extendable

SCL methods, we select the regularization-based method,

SI [54], and memory-based method DER [60] .

• Finetune. Finetune means training the model continually
without any forgetting prevention. At time step n, f(·) is
trained on Xn with Lcss(·) only. It is the simplest method
and serves as the vanilla baseline.

• SI. SI [54] is a SCL method that prevents forgetting by

preserving the important old parameters. SI uses the gradient

from the objective loss to identify the parameter importance,

thus can be adapted to unsupervised setting.

• DER. DER [60] is a SCL method that randomly stores old
data and replay them via distillation. Both characteristics

enable DER to be applied in unsupervised setting. Espe-

cially, its distillation is based on the output from the CNN

backbone model instead of representations.

• LUMP. LUMP [24] randomly stores old data and replay the
stored data via mixing them with new data .
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TABLE III
THE MODEL COMPARISON ON FOUR BENCHMARK IMAGE DATA SETS. FOR METHODS WITH MEMORY, THE LIMIT IS 256 FOR CIFAR-10, 640 FOR

CIFAR-100 AND TINY-IMAGENET, AND 960 FOR DOMAINNET-REAL. MULTITASK IS EXCLUDED FROM COMPARISON SINCE IT ACCESSES OLD DATA.

Model CIFAR-10 CIFAR-100 Tiny-ImageNet DomainNet-real
Acc ↑ Fgt ↓ Acc ↑ Fgt ↓ Acc ↑ Fgt ↓ Acc ↑ Fgt ↓

Multitask 95.76 ± 0.08 - 86.31 ± 0.38 - 85.09 ± 0.01 - 75.37±0.07 -

Finetune 89.02 ± 0.05 5.79 ± 0.07 75.88 ± 2.18 5.23 ± 3.96 71.03 ± 1.31 10.01 ± 0.73 68.46 ± 0.16 7.10 ± 0.07

SI [54] 91.06 ± 0.08 3.79 ± 0.11 78.93 ± 1.15 8.37 ± 1.30 71.37 ± 0.82 9.99 ± 0.47 68.81 ± 0.06 6.57 ± 0.10

DER [60] 90.17 ± 0.62 5.15 ± 0.78 76.70 ± 0.45 9.21 ± 0.69 72.78 ± 0.59 8.58 ± 0.36 68.96 ± 0.23 6.79 ± 0.19

LUMP [24] 91.05 ± 0.37 2.11 ± 0.23 83.41 ± 0.14 4.12 ± 0.17 77.58 ± 0.24 4.24 ± 0.34 66.54 ± 0.06 6.11 ± 0.57

CaSSLe [33] 92.28 ± 0.13 0.62 ± 0.05 83.67 ± 0.35 1.33 ± 0.15 78.76 ± 0.25 2.48 ± 0.40 70.78 ± 0.23 0.55 ± 0.12

Our EDSR 93.14 ± 0.08 0.12 ± 0.06 85.42 ± 0.20 0.57 ± 0.14 81.19 ± 0.22 1.77 ± 0.28 71.58 ± 0.27 0.24 ± 0.11

• CaSSLe. CaSSLe [33] does not store old data and uses
knowledge distillation to prevent forgetting.

• Multitask. Multitask model does not follow the continual

setting, and all the data sets are learned at once, i.e. f(·)
is optimized jointly on {X1, ..., Xn} by Lcss(·). Thus, it is
regarded as the upper bound of continual learning models.

5) Implementation Details: The experiments are run on

Nvidia RTX-2080 GPUs and Nvidia RTX-3090 GPUs. Our

code is publicly available at Github.

For the data augmentation methods, we select

{crop, horizontalFlip, colorJitter, grayScale, grayScale,
gaussianBlur} for image data and adopt an effective

technique tabularCrop [75] for tabular data. To extract

representations from the augmented data, the model f(·) is a
concatenation of a ResNet-18 model [76] and a 2-layer MLP

for image data, or a 7-layer MLP for tabular data. Especially

for tabular data, the first layer of f(·) is data-specific and
unifies various input table dimensions into the same hidden

dimension. The image representations are of 2048 dimensions

and the tabular ones are of 128 dimensions. The distillation

projector pdis(·) is a 2-layer MLP with the same dimension
as the representation.

We select the Lcss(·) from SimSiam [31] for its effective-

ness and low GPU memory requirement. The representation

predictor h(·) of SimSiam a 2-layer MLP with the same

dimensions as representations. The optimizer is selected as

stochastic gradient descent for image data and Adam [77] for

tabular data. Unless specified, we train all the models for 200

epochs on CIFAR-10 and CIFAR-100, 300 epochs on Tiny-

ImageNet, 150 epochs on DomainNet-real, and 1000 epochs

on tabular data. The results are averaged for 4 separate runs for

image data and 10 runs for tabular data. To evaluate the quality

of the representations without introducing extra parameters,

the KNN Classifier [78] is selected, which is also a common

evaluation method in CSSL [24], [31], [33].

For our method, the only hyper-parameter is the number

of neighbors for calculating the noise of Lrpl(·), which is
set to 100 in CIFAR-10, 10 in CIFAR-100, Tiny-ImageNet

and DomainNet-real and 100 in five tabular data sets. We

follow the hyper-parameter settings in LUMP [24] to set up

the baseline methods SI, DER and LUMP.

B. Main Experiment

In this subsection, we compare the overall accuracy and

forgetting ratio between baselines with the proposed EDSR on

four benchmark image data sets. The results and discussions

on the tabular data set are shown in Sec. IV-E. Comparing

previous memory-based methods (DER and LUMP) with the

memory-free methods (SI, CaSSLe), the latter have larger Acc
and smaller Fgt. This ineffective usage of memory comes with
two reasons. First is that DER and LUMP randomly select old

data, but the high data quality is essential for unsupervised

learning to effectively revoke the old knowledge. Secondly,

their designs of data replay cannot exploit the advantage of

Lcss(·). DER uses the backbone output instead of the represen-
tation, which neglects the rich information in representations.

LUMP applies mixup, which brings ambiguity and restricts

Lcss(·) from being fully optimized on either old or new data.

This drawback is especially sever for the complex data set

DomainNet-real, where LUMP is even worse than Finetune.

We overcome two problems by selecting representative data

and replaying via representation-level distillation. Thus, we

outperform memory-free methods significantly and achieve the

leading accuracy and low forgetting issue.

To provide more insights to the forgetting ratio in Tab. III,

we visualize the forgetting matrix F of the models learned

on four image data sets in Fig. 4. The color shade reflects

the forgetting magnitude, and the smaller forgetting leads to

lighter color. Intuitively the forgetting issue in the Finetune

model is more severe than in continual learning models since

it does not apply any technique to prevent forgetting. Inter-

estingly, the Finetune model has smaller forgetting compared

with two SCL methods SI and DER on CIFAR-100. That

is because the Finetune model obtains smaller accuracies on

new data sets, leaving small space for forgetting. Moreover,

the UCL methods (LUMP, CaSSLe, and Ours) have much

smaller forgetting scores than the SCL methods SI and DER,

because UCL methods are designed to be more suitable to

Lcss(·). Compared with LUMP that only uses stored data,
CaSSLe explores the past model to include more complete old

knowledge, making CaSSLe forget less. Corresponding to the

lowest forgetting ratio of Tab. III, our method leverages both

stored data and past model, which achieves the lightest color in

Fig. 4. Notice that the length of data set sequence is the max

number of red boxes for a row in Fig. 4, which varies between

5 and 20. And regardless of short or long data set sequences,

our method effectively remains the lowest forgetting.

To evaluate the model plasticity and provide insights to

accuracy in Tab. III, we plot the new data set accuracy (i.e.,

Ai,i) at i-th increment in Fig. 5. We omit the comparison
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(a) Forgetting in CIFAR-10

(b) Forgetting in CIFAR-100

(c) Forgetting in Tiny-ImageNet

(d) Forgetting in DomainNet-real

Fig. 4. The forgetting matrix F of the models learned on four image data sets. Fi,j evaluates the accuracy decrease on the old data set X
j after learning the

new data set Xi. The reported values are the logarithms of forgetting and indicated by color. The lighter the color, the better the model (smaller forgetting).

TABLE IV
EXPERIMENTS ON DIFFERENT REPLAYING METHODS. THE DATA ARE
SELECTED BASED ON HIGH-ENTROPY DATA. THE REPORTED VALUE SS

AVERAGE ACCURACY Acc.

Dataset No Replay
(CaSSLe)

Loss for Data Replay
Lcss(·) Ldis(·) Lrpl(·)

CIFAR-10 92.28±0.13 91.38±0.13 93.17±0.26 93.14±0.08

CIFAR-100 83.67±0.35 73.63±3.33 85.23±0.31 85.42±0.20
TIny-ImageNet 78.76±0.25 62.15±0.89 80.27±0.56 81.19±0.22

between SCL methods as their Accs are significantly lower
than UCL ones. A higher accuracy on the new data set

reflects a better plasticity of the method. The new accuracy

is fluctuating during data set increments, because the learning

difficulty of data sets varies from one to the other. It is

interesting that the new accuracy of ours is not advanced.

Because our method has the strongest forgetting prevention

mechanism, which trades the model plasticity for stability to

achieve the best Acc and Fgt on all the learned data sets.
This is also reflected from CaSSLe, which has the second

best Acc and Fgt but generally has the second lowest new
data set accuracy. Furthermore, the standard deviations of

Finetune and CaSSLe are higher than those of the replay

methods (LUMP and Ours) as depicted in Fig. 5b. This is

because CIFAR-100 has smaller (500 images per data set)

and simpler (32×32 pixels) new data sets, which makes the

model prone to overfitting and sensitive to initial states. The

replay methods overcome this issue by providing the old data

to diversify the new data sets.

C. Ablation Studies

Here we report the performance of several variants of EDSR

to investigate some key components in this paper, including

how injecting noise improves the replay performance, how to

select data, and how different designs of Lcss(·) affect the
model effectiveness. Note that the original setting is based

on selecting high-entropy data and replaying through noise-

enhanced distillation Lrpl(·).
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(a) CIFAR-10 (b) CIFAR-100 (c) Tiny-ImageNet (d) DomainNet-real

Fig. 5. Experiments on the new data set accuracy.

1) How to Replay Data: To show the improvement brought
by replaying the old data with noisy distillation, we present

the experiments in Tab. IV, where the comparison among

using Lcss(·), Ldis(·), and Lrpl(·) to replay the stored data
is presented. The data selection method is by high-entropy

data. It is interesting that replaying with Lcss(·) is worse
than no data replay. This validates the issue of over-fitting

on the stored data under the UCL setting, which is caused

by the inability of representing the whole old data by a few

stored, unlabeled data. Fortunately, the issue is solved by the

distillation mechanism that compensates the old knowledge

with the old model, as shown in the results of replaying

with Ldis(·) and Lrpl(·). Furthermore, Lrpl(·) adds noises to
enlarge the learnable old knowledge, making it outperform

Ldis(·) in data replay. Especially, the advantage of Lrpl(·)
increases with more complex data sets.

2) How to select data: In Tab. V, the effectiveness of re-
playing different data selection methods are evaluated. Besides

entropy based data selection, other data selection methods are:

• Random: randomly select data within the memory size.
• Distant: data with maximum distance among each other are
selected based on K-means++ seeding algorithm [79].

• K-means: store the cluster centers of K-means [80], where
the cluster number is proportional to the memory size.

• Min-Var: [61] forms the same amount of clusters as the
number of classes, and store the data whose augmented

views have minimum representation variance.

Note that the memory limit is 320 for CIFAR-10 and 640

for CIFAR-100 and Tiny-ImageNet. As shown in Tab. IV,

Lcss(·) is less effective in data replay. Therefore, we only show
the variants of different selection models under compilation

of Ldis(·) and Lrpl(·) in Tab. V. The results under Ldis(·)
are related to no additional tricks and directly reflect the

effectiveness of different selection methods. Furthermore, the

results under Lrpl(·) show how our technique is applicable to
different selection methods and improve their performances.
We first compare the data selection methods with the results

under Ldis(·). Compared with no old data replay (CaSSLe),
any selection methods can bring notable improvements. In-

terestingly, compared with vanilla data selection methods

(Random, Distant), clustering methods (K-means, Min-Var)

do not always have advantages. This is because data from

clusters are prone to dense areas in the representation space,

which can be locally important but require a careful choice

of cluster number to maintain high entropy. As a result, the

clustering methods do not generalizes well on different data

(a) CIFAR-100 (b) Tiny-ImageNet

Fig. 6. Experiments on the effect of different number of neighbors for
calculating noise in Lrpl(·). We plot unchanged CaSSLe just for comparison.
sets. On the other hand, directly selecting high entropy data

is more effective and generalizes better.

Afterwards, we evaluate the advantages of Lrpl(·) over
Ldis(·). Across different data selection methods, replaying
with Lrpl(·) generally achieves higher Acc and lower Fgt.
This reflects that when distilling the old data with noise, old

knowledge is better recovered and over-fitting issue is less

likely to happen. The improvement from noise in CIFAR-10

is small, because storing 256 data sample is large enough to

represent the old data sets, and adding noise can only stabilize

the performance.

3) Different CSSL losses: In the main experiments, we base
our method on Lcss(·) from SimSiam. Here we switch to

Lcss(·) of BarlowTwins to evaluate the effect from different

Lcss(·), the results are shown in Tab. VI. After the substitution
of Lcss(·), CaSSLe and Ours have decreased performances,
especially CaSSLe is significantly inferior to LUMP. This

is because the input representations should differ only from

their encoder models to ensure the effectiveness of distillation.

As shown in Eq. (3), Lcss(·) of SimSiam can satisfy this

requirement, based on which CaSSLe and Ours give good

performances. However, from Eq. (4), Lcss(·) of BarlowTwins
considers the correlation matrix between two batches of repre-

sentations, which unavoidably compares inputs from different

data and different models simultaneously. This brings chaos to

the distillation process, confusing the knowledge from the past

model. LUMP escapes from this chaos as it relies solely on the

old data. On the other hand, despite the reduced effectiveness

of distillation, our effective usage of old data still makes our

performance better than CaSSLe.

D. Sensitivity Analysis

To evaluate the sensitivity of EDSR in different learning

settings, we present several experiments that are related to the

hyper-parameter, the subset setting of data sets, and the amount

of stored data.
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TABLE V
EXPERIMENTS ON DIFFERENT STORAGE METHODS AND WHETHER ADD NOISES. MEMORY SIZES ARE THE SAME FOR ALL THE METHODS, 256 FOR

CIFAR-10 AND 640 FOR CIFAR-100 AND TINY-IMAGENET.

DataSet No Replay
(CaSSLe)

Random K-means [80] Min-Var [61] Distant [79] High Entropy
Replay with Ldis(·)

CIFAR-10
Acc ↑ 92.28 ± 0.13 93.04 ± 0.11 93.08 ± 0.19 92.96 ± 0.15 93.03 ± 0.03 93.17 ± 0.26
Fgt ↓ 0.62 ± 0.05 0.07 ± 0.05 0.20 ± 0.09 0.19 ± 0.07 0.14 ± 0.05 0.08 ± 0.01

CIFAR-100
Acc ↑ 83.67 ± 0.35 84.94 ± 0.68 84.71 ± 0.52 85.14 ± 0.23 84.87 ± 0.41 85.23 ± 0.31
Fgt ↓ 1.33 ± 0.15 0.89 ± 0.13 0.75 ± 0.20 0.48 ± 0.10 0.81 ± 0.09 0.73 ± 0.03

Tiny-ImageNet
Acc ↑ 78.76 ± 0.25 79.50 ± 0.35 80.36 ± 0.16 79.83 ± 0.35 79.55 ± 0.17 80.27 ± 0.56

Fgt ↓ 2.48 ± 0.40 2.02 ± 0.20 1.45 ± 0.19 1.41 ± 0.11 1.77 ± 0.33 1.31 ± 0.41
Replay with Lrpl(·)

CIFAR-10
Acc ↑ 92.28 ± 0.13 92.96 ± 0.08 92.90 ± 0.13 93.07 ± 0.19 93.05 ± 0.24 93.14 ± 0.08
Fgt ↓ 0.62 ± 0.05 0.06 ± 0.02 0.18 ± 0.02 0.20 ± 0.09 0.16 ± 0.09 0.12 ± 0.06

CIFAR-100
Acc ↑ 83.67 ± 0.35 85.04 ± 0.39 85.22 ± 0.27 85.26 ± 0.38 84.95 ± 0.45 85.42 ± 0.20
Fgt ↓ 1.33 ± 0.15 0.70 ± 0.11 0.72 ± 0.19 0.71 ± 0.02 0.91 ± 0.11 0.57 ± 0.14

Tiny-ImageNet
Acc ↑ 78.76 ± 0.25 79.81 ± 0.22 80.66 ± 0.35 79.89 ± 0.10 79.99 ± 0.59 81.19 ± 0.22
Fgt ↓ 2.48 ± 0.40 1.54 ± 0.19 1.79 ± 0.35 1.51 ± 0.09 1.70 ± 0.41 1.77 ± 0.28

(a) CIFAR-100: 20 subsets (b) CIFAR-100: 10 subsets (c) Tiny-ImageNet: 20 subsets (d) Tiny-ImageNet: 10 subsets

Fig. 7. Experiments on learning CIFAR-100 and Tiny-ImageNet in two settings, 20 subsets of 5 classes and 10 subsets of 10 classes.

TABLE VI
EXPERIMENTS OF DIFFERENT CSSL LOSSES. AVERAGE ACCURACY Acc

IS REPORTED.

Methods SimSiam BarlowTwins
CIFAR-100 Tiny-ImageNet CIFAR-100 Tiny-ImageNet

Multitask 86.31 ± 0.38 85.09 ± 0.01 87.16 ± 0.52 83.01 ± 0.10
Finetune 75.51 ± 0.64 57.13 ± 10.31 71.97 ± 0.54 68.81 ± 0.29
LUMP 83.41 ± 0.14 77.58 ± 0.24 83.14 ± 0.87 75.02 ± 0.36
CaSSLe 83.67 ± 0.35 78.76 ± 0.25 79.60 ± 0.80 70.30 ± 1.44
Ours 85.42 ± 0.20 81.19 ± 0.22 80.66 ± 1.67 75.59 ± 1.11

1) Hyper-parameter Study: Here we discuss how the se-

lection of hyper-parameter, i.e. the number of neighbors for

calculating noise in Lrpl(·), affects the model performance,
whose results are shown in Fig. 6. The settings other than

the neighbor number are the same as in the main experiment.

Note that Lrpl(·) with 0 neighbors is equivalent to Ldis(·).
Across the three data sets, with the increase of neighbor

number, the effectiveness of Lrpl(·) increases then decreases.
Because when the neighbor number is within a suitable range,

the neighbors share similar features as the anchor sample,

and adding the noise includes these useful knowledge into

distillation. After the neighbor number becomes too large, the

remote neighbors differ largely from the anchor, which makes

adding the noise misleading and negatively affects the model

performance. Besides Acc magnitude, within a proper range
of neighbor number, adding noises brings down the standard

deviation as more old knowledge is stably learned.

2) Different Data Settings: To investigate the influence of
changing the data set setting, we compare the model per-

formance on learning CIFAR-100 and Tiny-ImageNet in two

settings in Fig. 7. In addition to the original setting, the new

one divides them into 10 subsets of 10 classes. Considering

the complexity of data sets, CIFAR-100 is trained for 300

(a) CIFAR-100 (b) Tiny-ImageNet
Fig. 8. Experiments on the effect of different amounts of stored data.

epochs in the new setting. 32 samples are stored for each data

subset, thus 640 for the original split and 320 for the new split.

CIFAR-10 is omitted because 10 classes cannot be further

divided. Interestingly, at the beginning of increments, Acci
of all methods is increasing instead of decreasing, even for

Finetune which faces the most severe forgetting. Because the

sizes of the first several data sets are too small for Lcss(·) to
generate effective representations, making them inadequately

learned. After later increments, the larger amount of data

improves the effectiveness of the model and increases the

Acc’s of early data sets. Across different methods and data
settings, ours stably outperforms the others.

3) Different Amount of Stored Data: To investigate how
the number of stored data affects the model performance,

we present the results on CIFAR-100 and Tiny-ImageNet in

Fig. 8. We omit the noise in Lrpl(·) to remove the disturbance
from its improvements on replay. We also include random

data selection to further show the effectiveness of high-entropy

data selection. From Fig. 8, it is intuitive that storing more

data leads to better performances. The Acc drop in Fig. 8b
is because more epochs are needed to learn the larger and

more complex stored data. Interestingly, with the increasing
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TABLE VII
RESULTS OF LEARNING TABULAR DATA SETS.

Method Multitask Finetune CaSSLe Ours
Acc 80.38±0.31 80.82±0.49 81.09±0.73 81.27±0.47
Frg - 0.79±0.41 0.69±0.37 0.52±0.26

memory size, the performance difference between random

data and high entropy data increases then decreases. This

is affected by the old knowledge contained in the stored

data. When the memory size is small, the stored data can

contain limited old knowledge, thus the difference between

selection methods is small. Then with the increase of memory

size, the high entropy selection brings more representative

data into the memory, making the performance difference

larger. Finally, when the memory size is sufficiently large,

random selection is also likely to find representative data,

thus the performance difference becomes smaller. However,

because continual learning lays a small limit on the memory

size, guaranteeing high entropy is the most suitable selection

approach. This advantage is also reflected by the smaller

standard deviation and smaller average forgetting.

E. Generalization to Tabular Data

To evaluate the effectiveness of EDSR on other data type,

here we present the experiments on tabular data that are listed

in Tab. VII. LUMP is omitted from comparison because its

mix-up technique cannot be extended to non-unified input

dimensions of tabular data sets. We store 1% of each tabular

data set into the memory. It is interesting that the results of

Multitask is worse than the continual methods, especially Fine-

tune. This is because the sizes of data sets are unbalanced, and

those smaller data sets are worse learned when combined with

the larger ones. The continual methods avoids this issue by

learning different data sets individually. And EDSR achieves

the best performance, which validates our effectiveness on

other data type than image.

F. Efficiency-Effectiveness Study

As our EDSR replays old data to improve the performance,

we show the trade-off between time efficiency and effective-

ness in Fig. 9. Time costs CIFAR-100 are collected from

RTX 2080 GPUs and those of Tiny-ImageNet are collected

from RTX 3090 GPUs. Compared with SCL methods (SI and

DER), UCL methods (LUMP, CaSSLe and Ours) spend longer

time to achieve better performances. Within the UCL methods,

LUMP and Ours are less efficient due to the utilization of old

data. However, compared with the additional time spent, our

effectiveness improvement is more significant.

Additionally, we study the efficiency-effectiveness trade-off

within our method design, and results are shown in Fig. 10.

The number of replayed old data in each batch is the major

factor affecting our efficiency, while data selection takes much

smaller time than training. Thus, we present the study on

different sizes of replayed data in Fig. 10, and the memory

budget is 640. With the increase of replayed data size, the time

cost keeps increasing, while the effectiveness increases then

decreases. The decreased effectiveness is because replaying

too many stored data prohibits learning new knowledge. It

shows that 256 may be a proper size to achieve maximum

(a) CIFAR-100 (b) CIFAR-100

Fig. 9. Visualization of efficiency-effectiveness analysis (time is in hours).

(a) CIFAR-100 (b) Tiny-ImageNet

Fig. 10. Time vs Acc for different replay size.

effectiveness without sacrificing efficiency too much. To better

strike the balance, it may be a potential way to sample the

stored data from the memory based on their similarities to the

new data during replay. In such a way, more valuable stored

data can be replayed.

V. CONCLUSION
In this paper, we propose an effective unsupervised contin-

ual learning framework, namely EDSR, to help models learn

new knowledge without forgetting old knowledge. Specifically,

EDSR consists of data selection and data replay. To select

and store representative data subset without label assistance,

we analyze that such subset should have the largest entropy in

representation space. To replay the stored data while balancing

the model stability for old data and the plasticity for new

data, we propose to distill the noise-enhanced knowledge from

the old model. The performance of EDSR is demonstrated

by extensive experiments on real-world datasets. For the

future works, it is worth trying to study the continual learning

problem on graphs, such as graph neural networks [81],

[82], unsupervised graph learning [83], and knowledge graph

embedding [84], [85].
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