
Black-box Adversarial Attack and Defense on
Graph Neural Networks

Haoyang LI1, Shimin DI1
†
, Zijian LI1, Lei CHEN1, Jiannong CAO2

1The Hong Kong University of Science and Technology, Hong Kong SAR, China
2The Hong Kong Polytechnic University, Hong Kong SAR, China
{hlicg,sdiaa,zlicb,leichen}@cse.ust.hk, csjcao@comp.polyu.edu.hk

Abstract—Graph neural networks (GNNs) have achieved great
success on various graph tasks. However, recent studies have re-
vealed that GNNs are vulnerable to adversarial attacks, including
topology modifications and feature perturbations. Regardless of
the fruitful progress, existing attackers require node labels and
GNN parameters to optimize a bi-level problem, or cannot cover
both topology modifications and feature perturbations, which are
not practical, efficient, or effective. In this paper, we propose a
black-box attacker PEEGA, which is restricted to access node
features and graph topology for practicability. Specifically, we
propose to measure the negative impact of various adversarial
attacks from the perspective of node representations, thereby we
formulate a single-level problem that can be efficiently solved.
Furthermore, we observe that existing attackers tend to blur
the context of nodes through adding edges between nodes with
different labels. As a result, GNNs are unable to recognize nodes.
Based on this observation, we propose a GNN defender GNAT,
which incorporates three augmented graphs, i.e., a topology
graph, a feature graph, and an ego graph, to make the context
of nodes more distinguishable. Extensive experiments on three
real-world datasets demonstrate the effectiveness and efficiency
of our proposed attacker, despite the fact that we do not access
node labels and GNN parameters. Moreover, the effectiveness
and efficiency of our proposed defender are also validated by
substantial experiments.

Index Terms—Graph Neural Network, Adversarial Attack,
Graph Defense

I. INTRODUCTION

Graph tasks, such as graph isomorphism [1] and subgraph

counting [2], are important and popular topics in the database

area. Recently, many research works have shown that graph

neural networks (GNNs) [3], [4], [5], [6], [7], [8], [9], [10],

which learn node representations by aggregating the infor-

mation from their neighbors, have achieved great success

in the these tasks, including graph isomorphism [11], [12],

subgraph counting [13], [14], [15], trajectory routing [16],

[17], recommendation system [18], [19], knowledge graph

completion [20], [21], and node classification [22], [23].

Despite the great success, many studies [24], [25], [26],

[27], [28] have shown that the performance of GNNs on

these tasks will be significantly reduced when the graph is

modified. In real-world scenarios, it is common to run a

GNN model on the modified graph with the consideration

of data privacy or possible attacks. For example, the Internet

platform may modify the graph to protect users’ privacy

before data publication [29], [30], like revising user profiles

†Corresponding author

(perturbing features) and user links (modifying edge). Also,

attackers may control or hack some users to poison the online

social graphs by following/unfollowing users and revising

profiles. Due to the unpredictability and destructiveness of the

attacking behavior, exploring the vulnerability of GNNs under

attackers and revealing attack patterns are crucial to improve

the robustness and task performance of GNNs on modified

graphs.
Currently, adversarial attackers on GNNs can be categorized

into white-box attackers [31], [32], gray-box attackers [24],

[25], and black-box attackers [33], [34], [35], [36], [26].

White-box attackers [31], [32] require the graph data set

(including graph topology, node features, and labels) and the

parameters of target GNNs to conduct attacks. Based on the

gradients of GNNs, they modify the graph structures (i.e.,

topology modifications) and node features (i.e., feature per-

turbations) to make the attack more effective. Different from

white-box attackers, gray-box attackers [24], [25] do not need

the parameters of target GNNs, while they only require the

graph data set. They train a surrogate model which simulates

GNNs, and then generate adversarial attacks based on the

surrogate model. However, white-box and gray-box attackers

are not practical because it is scarcely realistic to obtain the

parameters of target GNNs or a large amount of node labels in

most of real-world applications [33], [34]. Moreover, the above

white-box and gray-box attackers sacrifice their efficiency to

gain effectiveness. Specifically, they formulate the attack prob-

lem as a bi-level optimization problem, where the upper-level

attack selection relies on the lower-level GNN model training.

Optimizing the underlying parameters is necessary to evaluate

candidate attacks, which makes the whole optimization process

highly time-consuming [37].
Therefore, to improve the practicability and the efficiency

of attackers, black-box attackers are proposed [26], [33],

[34], [35], [36]. Generally, black-box attackers assume that

the parameters of GNNs and node labels are inaccessible,

while they are restricted to access graph topology and node

features. However, there are still several limitations in the

settings of existing black-box attackers. First, they cannot

handle both topology modifications and feature perturbations

simultaneously, which is not flexible to deal with different

attack scenarios. Second, beside graph topology and node

features, several black-box attackers [26], [36] require some

predictions of the target GNNs to optimize their reinforce-

ment learning-based attack models, while the practicability

1017

2022 IEEE 38th International Conference on Data Engineering (ICDE)

2375-026X/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDE53745.2022.00081

20
22

 IE
EE

 3
8t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(IC

DE
) |

 9
78

-1
-6

65
4-

08
83

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DE
53

74
5.

20
22

.0
00

81

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 30,2023 at 14:24:37 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Summary of existing GNN attackers. 1 and 0 represent whether the input is required for the attacker. �and ×
indicate that the attacker can and cannot cover the attack type, respectively. The goal of attackers has two types: targeted attack

and untargeted attacks. Attacker nodes denote these available nodes that can be accessed and attacked by attackers. Particularly,

attackers that access all nodes can be easily extended to only access a subset of nodes. We discuss them in detail in Sec. II-B.

Input Required Attack Types
GNN Data Set Attack Constraint Conducted AttacksType

Attack
Model

Parameter Prediction Topology Feature Label Goal Attacker Nodes Topology Feature
Objective Level

PGD [31] 1 1 1 1 1 Untargeted All � × Bi-level
White-box

MinMax [31] 1 1 1 1 1 Untargeted All � × Bi-level

Nettack [25] 0 0 1 1 1 Targeted Subset � � Bi-level
Grey-box

Metattack [24] 0 0 1 1 1 Untargeted All � � Bi-level

RL-S2V [36] 0 1 1 1 0 Untargeted All � × Single level
ReWatt [26] 0 1 1 1 0 Untargeted All � × Single level
RWCS [33] 0 0 1 1 0 Untargeted Subset × � Single level
InfMax [34] 0 0 1 1 0 Untargeted Subset × � Single level

GF-Attack [35] 0 0 1 1 0 Targeted All � × Single level
Black-box

PEEGA (ours) 0 0 1 1 0 Untargeted All � � Single level

of attackers decreases and they are difficult to converge with

limited predictions. As shown in Tab. I we summarize the

existing GNN attackers from three perspectives: the required

inputs, the types of conducted attacks covered, and the number

of objective levels. None of existing works can cover all these

aspects.

To simulate real-world attacks, we propose a Practical,

Effective and Efficient GNN adversarial Attacker, named

PEEGA. PEEGA is a pure black-box attacker that is restricted

to access the graph topology and node features, which is more

practical and realistic in real-world applications. Specifically,

we propose a novel way to qualify the influence of topology

modifications and feature perturbations on the node represen-

tations. It first enables us to effectively attack both topology

and features concurrently. Besides, the measurement is model-

agnostic, where the performance of candidate attacks can be

evaluated without training the underlying GNN parameters.

As a result, the optimization in PEEGA can be formulated as

a single-level problem, which can be efficiently solved.

Meanwhile, many GNN defenders [27], [28] have been

proposed to protect GNNs from attacks and improve ro-

bustness of GNNs, i.e., achieving good performance on the

poison graph (i.e., the graph has been attacked). Nevertheless,

preprocessing-based defenders [32], [38] eliminate edges of

dissimilar nodes, and attention-based defenders [4], [39], [40]

restrict the negative impact of potential attacks by removing

those edges with small attention weights. Such way ignores

the case that the edges may be removed from the original

graph by attackers. Graph-learning based defenders [41], [42],

[43] target to improve performance of GNNs by modifying

the poison graph. Such pure performance-driven way may

make the modified graph deviate from the original graph. In

summary, existing defenders do not well study attack patterns,

such as the change of node contexts before and after attacks,

and thus fail to defend against attackers effectively.

In this paper, we systematically investigate GNN attackers,

and reveal their attack patterns. Specifically, existing attackers

tend to add edges between nodes with different labels, which

makes the context of nodes indistinguishable. To resist such

attacks, we propose a simple but effective GNN defender

based on graph augmeNtATions, named GNAT. Specifically,

we propose three augmented graphs (topology graph, feature

TABLE II: Summary on Important Notations.

Symbols Meanings
G(V,A,X,Y) The graph G with the node set V , adjacency matrix A,

node features X, and node label Y.

Â, X̂ The adjacency matrix and features after modification.
An The normalized adjacency matrix of A.
Nv The neighbors of node v.

hv,H The representation of v and all nodes, and H ∈ R
|V|×dh .

Z The label probability of all nodes, and Z ∈ [0, 1]|V|×|V|.
Lgnn,Latk The training loss of GNNs, and attack loss of GNN

attackers.
Mθ The GNN model M parameterized by θ.
‖·‖p Lp norm distance.

graph and ego graph) to make the context of nodes more

distinguishable. Especially, it can be conducted in the black-

box settings, such as lacking of data labels, and inaccessible

GNN parameters. Overall, our contributions are summarized

as follows:

• We propose a practical, effective, and efficient black-box

attacker PEEGA. Although PEEGA requires least input pa-

rameters, we propose a novel way to measure the influence

of adversarial attacks on the node representations. Thus,

PEEGA can attack the graph topology and node features

more effectively. Besides, the proposed influence measure-

ment is unsupervised and model-agnostic, which avoids

optimizing GNN parameters to achieve more efficiency.

• We provide insights that existing attackers degrade the

performance of GNNs by making the context of nodes

indistinguishable. To resist such attacks, we propose a

simple but effective defender GNAT, which incorporates

three augmented graphs to improve the robustness of GNNs.

• Experiments on three real-world datasets demonstrate that

our GNN attacker PEEGA can efficiently achieve compara-

ble attacking effectiveness with less inputs.

• Compared with raw GNNs and existing GNN defenders,

GNAT can defend against various GNN attackers, including

PEEGA. GNAT achieves the outstanding performance no

matter it is trained on clean graphs or poison graphs. And

GNAT only takes a bit more time than raw GNNs, but it is

more efficient than all the other defender baselines.

II. RELATED WORK

In this paper, we consider the node classification task

where nodes have binary node features [25]. Formally,

1018

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 30,2023 at 14:24:37 UTC from IEEE Xplore. Restrictions apply.

G(V,A,X,Y) denotes a graph, where V , A ∈ {0, 1}|V|×|V|,
X ∈ {0, 1}|V|×dx , Y ∈ {0, 1}|Vla|×|Y| denote nodes, ad-

jacency matrix, node features, and node labels, respectively.

Specifically, V la ⊂ V is the set of labeled training nodes,

A[u][v] = 1 indicates that there is an edge eu,v between node

u and v, and Nv = {u : A[u][v] = 1} denotes the neighbors of

v. Generally, models for the node classification task [4] target

to learn a classifier f : V → Y to map nodes to the label space

Y . The important notations are summarized in Tab. II.

A. Graph Neural Network
Taking A,X in a graph G as inputs, GNNs [3], [5], [4],

[44] first encode nodes V into dh-dimensional vector space

(i.e., H ∈ R
|V|×dh) by recursively aggregating the information

from its neighbors u ∈ Nv. Taking one representative Graph

Convolutional Network (GCN) [3] as an example, the l+1-th
node representations Hl+1 ∈ R

|V|×dl+1 can be defined as:

Hl+1 = σ(AnH
lWl),

where σ denotes a non-linear function (e.g., ReLU [45]), Hl ∈
R

|V|×dl denotes node representations in the l-th layer, Wl ∈
R

dl×dl+1 for l ∈ {1, · · · , L−1}. An is a normalized adjacency

matrix [3]. Initially, H0 = X. After L-layer aggregations, we

can obtain the final output Z ∈ R
|Vla|×|Y| as:

Z = softmax(Anσ(Anσ(· · ·)WL−1)WL), (1)

where WL ∈ R
dL−1×|Y|. Then the loss of the GCN model

can be defined as cross entropy loss:

Lgnn(Mθ, G(V,A,X,Y)) = −
∑

v∈Vla

lnZ[v][yv], (2)

where yv is the given label of v from training data, Mθ

represents the GCN model parameterized by θ, and θ =
{W0, · · · ,WL} denotes the set of transform parameter ma-

trix. Following [24], [25], [41], we focus on GCN [3] in

this paper. Additionally, several variants of GCN have been

proposed to improve its efficiency [5], [46], learn the relative

weight between each connected neighbors [4], or alleviate the

over-smoothing problem [47]. More details can be referred to

comprehensive surveys [48], [49], [50].

B. Adversarial Attack on GNNs
As introduced in Sec. II-A, GNNs take adjacent matrix A

and node features X as inputs. Hence, existing GNN attack-

ers generally conduct topology modifications on A, such as

adding and removing edges, and conduct feature perturbations

on X, such as modifying feature xv of node v by x̂v = xv+εv.

These attacks influence representations of other nodes due to

the message-passing manner of GNNs and thus affect their

labels.
From the view of attacking scenarios, there are two con-

straints on the target nodes (victim nodes) and the available

nodes that can be accessible for attacking (attacker nodes).

Then, current GNN attackers can be divided into two cate-

gories [27], [28]: targeted attacks and untargeted attacks. The

targeted attacks [25] aim to reduce the performance of a victim

node by attacking a predefined set of attacker nodes. The

untargeted attacks [24], [31], [32], [33], [34], on the other

hand, aim to reduce the global performance of models on

all test nodes by attacking predefined nodes or all nodes. As

shown in Tab. I, most of the current attackers on untargeted

attacks do not define the available attacker nodes in their

papers. But these untargeted attackers including ours can be

simply extended to this constraint.

From the view of attacking inputs, current attackers have

three types: white-box, gray-box, and black-box. White-box

attackers [31], [32] take the graph data set (including graph

topology A, node features X, node labels Y) and the pa-

rameters of the target GNN θ as inputs to generate topology

modifications and feature perturbations. We formally define

the goal of attackers as follows:

Definition 1 (Target of GNN attackers.). Given a modification
budget δ, a GNN model Mθ parameterized by θ, and the graph
G(V,A,X,Y), the target of GNN attackers is to find the
modified topology Â and node features X̂, which can minimize
the attack loss Latk:

min
Â,X̂

Latk(Mθ∗ , Ĝ(V, Â, X̂,Y)), (3)

s.t.

{
θ∗ = argminθ Lgnn(Mθ, Ĝ(V, Â, X̂,Y))∥∥∥Â−A

∥∥∥
0
+

∥∥∥X̂−X
∥∥∥
0
≤ δ

,

where ‖·‖0 denotes L0 norm,
∥∥∥Â−A

∥∥∥
0

counts the number

of different elements in the same position between Â and A,
Lgnn(·) measures the training loss of GNN Mθ on the poison
graph Ĝ, Latk(·) measures the generalize loss of Mθ∗ on the
test unlabeled nodes.

Assuming that a model with a high training error is more

likely to generalize poorly on test nodes, current works [24],

[25] set Latk = −Ltrain and minimize it by modifying graph

topology given a limited budget.

Different from white-box attackers, the gray-box attackers

[24], [25] assume that the GNN parameters θ is inaccessible.

For example, Metattack [24] trains a surrogate model parame-

terized by θ′ to fit the node labels, such as fθ′ : V → Y , then

utilize fθ′ to replace Mθ in Eq. (3). However, both white-

box attackers and gray-box attackers require a large amount

of node labels (i.e., Y) to find effective attacks.

Black-box attackers take graph topology A and node fea-

tures X [33], [34], [35], as well as limited predictions of

the target GNNs [26], [36], as inputs. Therefore, black-box

attackers cannot optimize the bi-level optimization problem

in Eq. (3) due to the lack of node labels Y and the model

parameters θ. RL-S2V [36] and ReWatt [26] employ the

reinforcement learning framework, which needs the predic-

tions of the target GNN as rewards. Although other black

attackers [33], [34], [35] only needs A and X as inputs,

they cannot conduct both feature perturbations and topology

modifications simultaneously, which limit their practicability

and attacking effectiveness.

1019

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 30,2023 at 14:24:37 UTC from IEEE Xplore. Restrictions apply.

C. Defense on GNNs

As introduced in Sec. II-B, GNN attackers attack a

clean graph G(V,A,X,Y) to generate the poison graph

Ĝ(V, Â, X̂,Y). GNN defenders are proposed to resist such

attacks, which target to achieve good task performance on the

poison graph. We formally define GNN defenders as follows.

Definition 2 (Target of GNN defenders). Given a GNN model
Mθ parameterized by θ and a poison graph Ĝ(V, Â, X̂,Y),
the target of GNN defenders is to find a purified topology Ã
and node features X̃, which can minimize the training loss
Lgnn:

min
θ

Lgnn(Mθ, G̃(V, Ã∗, X̃∗,Y)) (4)

s.t. Ã∗, X̃∗ = arg min
θ,Ã,X̃

Lpurify(Mθ, G̃(V, Ã, X̃,Y); Ĝ)

where Lpurify measures the loss of the purification algorithm,
which takes GNN Mθ and the poison graph Ĝ as inputs, and
optimizes the purified graph G̃ = (V, Ã, X̃,Y).

Generally, there are three main categories of GNN defend-

ers. First, based on node features, preprocessing-based defend-

ers [32], [38] compute the similarity of the connected nodes on

the poison graph. Then, they eliminate those edges from the

poison graph if the similarity is smaller than a threshold. They

may suffer from the situations where features are seriously

attacked. Second, attention-based defenders [4], [39], [40] use

the attention mechanism [44] to measure the relative weight

on each pair of connected nodes. Assuming the adversarial

edges contribute less, they remove those edges with small

attention values. Third, graph learning-based defenders [41],

[42], [43] optimize the purified graph G̃ from Ĝ by evaluating

the performance of a GNN model Mθ on Ĝ. However, the

above defenders ignore attack patterns somehow: 1) the first

two cannot handle the case that edges may be deleted from the

original graph, 2) the third one purely pursues the performance

without studying the attack patterns for nodes with different

labels.

III. ATTACK MODEL

In this section, we introduce our black-box attacker PEEGA.

We first measure the impact of topology modifications and

feature perturbations on node representations from self-view

and global view. Then, we formulate a novel attack objective

under the black-box setting, and propose an efficient greedy-

based algorithm to solve it.

A. Measurement on the Difference of Node Representations

As introduced in Sec. I and Sec. II-B, white-box and

grey-box attackers achieve better performance than black-

box attackers, because the former can conduct both feature

perturbations and topology modifications by leveraging more

inputs (e.g., a large amount of node labels). Black-box attack-

ers assume that GNN parameters and node labels cannot be

accessed for the sake of practicability. But existing attackers

fail to consider two attack types simultaneously and some of

them require model predictions as inputs. Therefore, we target

Fig. 1: The proportion of edges whose connected nodes have

the same label.

to conduct two types of attacks while only requiring A and X
as inputs. To achieve this goal, we propose a model-agnostic

and unsupervised way to measure the influence of attacks on

the node representations.
As discussed in Sec. II-A, GNNs first derive node repre-

sentations H by the neighbor aggregations and then use H
to predict the label probability Z of nodes. It indicates that

the classification performance is firmly correlated with the

quality of node representations. Thus, we propose to evaluate

the negative impact of feature perturbations and topology

modifications on node representations when lacking of node

labels. We next introduce how to measure the difference of

node representations from self view and global view of nodes.
1) Self View: Intuitively, a node v tends to be misclassified

if there is a big difference between its original representation

hv and the representation ĥv after the topology modifications

Â and feature perturbations X̂. Let the representations of

all nodes before and after graph attacks are denoted as

H ∈ R
V×dz and Ĥ ∈ R

V×dz . The change of representation

for every node v ∈ V can be calculated as:

Dif1(H, Ĥ) =
∑
v∈V

∥∥∥ĥv − hv

∥∥∥
p
, (5)

where ‖·‖p measures Lp-norm distance. Maximizing

Dif1(H, Ĥ) can enlarge the difference between node

representations before and after attacks.
2) Global View: In addition to measuring the difference

of each node representation before and after Â, X̂, it is also

important to measure the difference between the representa-

tions of nodes with the same label. If the representation of a

node is dissimilar to that of other nodes in the same category,

the misclassification errors will increase. Even though we

lack the node labels, we can maximize the representation

difference between each pair of connected nodes. It is because

the connected nodes tend to have the same label, i.e., the

homophily property of graphs. As shown in Fig. 1, the

proportion of connected nodes with same label on the five

real-world datasets is more than 70.43%. Therefore, the 1-

hop neighbors are likely to have the same label with nodes,

and we can utilize their node representations as a guidance.

Formally, the difference of representations among nodes and

its neighbors can be calculated as:

Dif2(A,H, Ĥ) =
∑
v∈V

∑
u∈Nv

∥∥∥ĥv − hu

∥∥∥
p
, (6)

1020

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 30,2023 at 14:24:37 UTC from IEEE Xplore. Restrictions apply.

where the original topology A determines the neighbor in-

formation Nv. Maximizing Dif2(A,H, Ĥ) can enlarge the

difference between the node representation after attack and

the representations of its neighbors before attack.

B. PEEGA GNN Attacker

1) Problem Formulation: Unfortunately, the black-box set-

ting assumes that node labels and GNN parameters are

not available. This leads that the node representation hv
is unknown when we try to maximize Dif1(H, Ĥ) and

Dif2(A,H, Ĥ). Therefore, we propose an alternative objec-

tive to maximize the difference between node representations

in Eq. (5) and (6). For simplicity, here we utilize two-layer

GCN [3] as an example to represent the node difference as:∥∥∥ĥv − hu

∥∥∥
p
=

∥∥∥Â2
n[v]X̂W −A2

n[u]XW
∥∥∥
p

≤ ‖W‖p ·
∥∥∥Â2

n[v]X̂−A2
n[u]X

∥∥∥
p
, (7)

where we follow [25] to relax the non-linear function σ(·)
to the linear one. The inequality in Eq. (7) can be driven

from [51] when taking W as constant matrix. This is in

line with the scenario of inaccessible and immutable GNN

parameters. In Eq. (7), A2
nX can simulate the most important

step of GNNs: aggregating the information from neighbors.

Thus, A2
nX can serve as a surrogate model for black-box

attackers. Modifying A and X in Eq. (7) could affect the upper

bound of node difference. Overall, Eq. (7) enables a model-

agnostic and unsupervised way to evaluate the influence of

attacks. Formally, we define the black-box attack problem as

follows:

Definition 3 (PEEGA Black-box Attack Problem). Given a
graph modification budget δ, and a graph G(V,A,X), the
target of PEEGA black-box attacker is to find the topology
modifications Â and feature perturbations X̂, which can
maximize the difference of node representations before and
after adversarial attacks. The problem is formulated as:

max
Â,X̂

∑
v∈V

∥∥∥Â2
n[v]X̂−A2

n[v]X
∥∥∥
p

+ λ
∑
v∈V

∑
u∈Nv

∥∥∥Â2
n[v]X̂−A2

n[u]X
∥∥∥
p
, (8)

s.t.
∥∥∥Â−A

∥∥∥
0
+

∥∥∥X̂−X
∥∥∥
0
≤ δ

where An denotes a normalized adjacency matrix [3] and λ
is a trade-off hyper-parameter.

As shown in above formulation, PEEGA only requires the

original graph topology A and node features X as inputs,

while white-box and gray-box attackers require more inputs

like node labels Y and GNN parameters θ (see Sec. II-B).

Moreover, white-box and gray-box attackers formulate a bi-

level optimization problem that optimizes GNN parameters

and the attack loss iteratively, which is time-consuming. The

above objective does not need to iteratively update the GNN

parameters, which can be more efficiently solved. Further-

more, different from existing black-box attackers [33], [34],

Algorithm 1: PEEGA Attacker

Input: Graph G(V,A,X), modification budget δ
1 Â ← A, X̂ ← X

2 while
∥∥∥Â−A

∥∥∥
0
+

∥∥∥X̂−X
∥∥∥
0
≤ δ do

3 At = −2Â+ 1

4 Xf = −2X̂+ 1

5 St = �ÂL(Â, X̂)�At

6 Sf = �X̂L(Â, X̂)�Xf

7 (u, v) ← entry with the highest score in St

8 (o, i) ← entry with the highest score in Sf

9 if St[u][v] < Sf [o][i] then
10 X̂ ← X̂+Xf [o][i]

11 else
12 Â ← Â+At[u][v]

13 Return: The poison graph Ĝ(V, Â, X̂)

[35], [36], [26], PEEGA introduces the concept of difference

measurement on node representations, which enables both

topology modifications and feature perturbations under the

black-box setting. Moreover, unlike some black-box attackers,

PEEGA does not need model predictions as inputs (see Tab. I

for more information).
2) Greedy-based Optimization: Although Def. 3 simplifies

the classic bi-level formulation in Eq. (3), optimizing the single

level problem Def. 3 is still a non-trivial task. Given the

adjacency matrix A ∈ R
|V|×|V|, node features X ∈ R

|V|×dx ,

and the budget δ, the number of candidate attack combinations

is
(|V|2+dx|V|

δ

)
, which leads to O

(
(|V|2 + dx|V|)δ

)
search

space. It is clearly infeasible to obtain the best attack combina-

tions by exhaustive search. Then, we propose a greedy-based

optimization algorithm to solve the problem in Def. 3. With

the help of gradients, our algorithm can give a good direction

to find the next effective attack under the consideration of the

selected attacks. First, we take the topology modifications and

feature perturbations as discrete actions, and define them as

follows:

Definition 4 (Candidate Attack Actions). Given the adjacency
matrix A ∈ {0, 1}|V|×|V|, the candidates of topology modifica-
tions can be denoted as At = −2A+1, where 1 is an matrix
with size of |V| × |V| and all elements are 1. Specifically,
At[u][v] = −1 and At[u][v] = 1 indicate the attacker can
delete or add the edge between node u and v, respectively.
Similarly, given the node features X ∈ {0, 1}|V|×dx , we define
the candidates of feature perturbation as Xf .

Then, we define the score of candidate attack actions as:

St = �ÂL(Â, X̂)�At, Sf = �X̂L(Â, X̂)�Xf , (9)

where St[u][v] and Sf [u][i] record the score of attacks in

At[u][v] and Xf [u][i] respectively, � denotes the element-wise

multiplication, and L(Â, X̂) denotes the difference measure-

ment in Eq. (8). An attack candidate with the highest gradient

score indicates the direction of greatest change for maximizing

1021

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 30,2023 at 14:24:37 UTC from IEEE Xplore. Restrictions apply.

the goal in Eq. (8). Note that the gradients �ÂL(Â, X̂)
and �X̂L(Â, X̂) cannot be directly computed because Â
and X̂ are discrete. We employ the approximation technique

presented in [24].

The basic idea of our algorithm is to greedily select attacks

based on the score St and Sf until exceeding the attack

budget δ. Our greedy-based algorithm has been summarized

in Alg. 1. We first compute the attack candidates based on the

existing poison topology Â and features X̂ (line 3-4). Then

we compute the score of these attack candidates based on the

multiplication of candidates and gradients (line 5-6). Finally,

we select the candidate with the highest score (line 7-8) and

add it into the poison topology Â or features X̂ (line 9-12)

Time Complexity. We analyze time complexity of Alg. 1.

In line 5-12, it takes O(dx|V|2) to compute L(Â, X̂) and

O(dx|V|2) to compute the score of candidate attacks. Then,

the total time complexity is O(δdx|V|2) after δ iterations.

IV. DEFENSE MODEL

In this section, we first provide an interesting insight into

the GNN attackers, i.e., tending to add edges among nodes

with different labels, which blurs the context of nodes. Then,

to defend such attacks, we propose a simple but effective graph

augmentation method, especially it can handle the scenario of

scarce labels.

A. Insights on GNN Attackers

As discussed before, existing GNN attackers mainly conduct

topology modifications and feature perturbations. To further

explore defense, we analyze the attacks of several effective

white-box, gray-box and black-box GNN attackers. Through

experiments, we observe that existing attackers (including

PEEGA) have a tendency in the topology modifications.

Topology modifications are classified into four types: adding

or deleting edges between nodes with the same or different

labels. As illustrated in Fig. 2, GNN attackers tend to add

edges between nodes with different labels in topology modi-

fications. As a result, such attacks make the context of nodes

indistinguishable, and thus GNNs fail to recognize nodes.

To further verify the above idea, we conduct an experiment

to reveal that as the number of attacks increases, the context of

nodes with different labels become more similar. Without loss

of generality, we use Metattack [24] to attack a publication

citation graph, namely Cora, with a variety of target budgets

δ. For similarity and clarification, we set δ = r · ‖A‖0, where

r ∈ {0, 0.5, 1, 5} denotes the perturbation rate and ‖A‖0 is

the number of edges. We then train a GCN [3] on the poison

graphs for node classification task. Specifically, given graph

G(V,A,X,Y), the cross-label neighborhood similarity [52]

between labels yi, yj ∈ Y is calculated by:

sim label(yi, yj) =
1

|Vyi | · |Vyj |
∑

v∈Vyi

∑
u∈Vyj

cosine(cv, cu),

where node set Vyi consists of nodes with label yi, and

cv ∈ R
|Y| denotes normalized label histogram of v’s 1-

hop neighbors, i.e., cv[yi] = nv,yi/|Nv| where nv,yi is

(a) Cora dataset. (b) Citeseer dataset.

Fig. 2: The edge difference between the poison graph and the

origin graph under perturbation rate of 0.1, i.e., the budget δ =
0.1 · ‖A‖0. Add and Del denote edge addition and deletion,

respectively. Same and Diff denote whether the node pairs

have the same or different label. Add+Same indicates edge

addition between node pairs with the same labels.

the number of 1-hop neighbors of v with yi. In particular,

sim label(yi, yj) denotes intra-label similarity if yi = yj else

it denotes inter-label similarity.

As shown in Fig. 3, the clean graph has the higher intra-

label similarity and lower inter-label similarity. It indicates that

nodes with distinct labels have distinguishable neighborhood

patterns, which enables GCN to recognize nodes accurately

(Acc = 0.83). However, as r increases, the inter-label similar-

ity of nodes increases, leading to indistinguishably neighbor

patterns among nodes with distinct labels. As a consequence,

the accuracy of node classification decreases.

B. Graph Augmentation Method

To against the specific topology modifications discussed in

Sec. IV-A, we propose a simple but effective method based

on data augmentation [53], [54], [55], [56]. Intuitively, adding

edges between nodes with the same label can make nodes more

distinguishable and decrease the attack loss. We conclude this

intuition in the following theorem and put the proof in the

online report1 due to the space limit.

Theorem 1. Assume that there is a poison graph
Ĝ(V, Â, X̂,Y), where each training node v ∈ V la has been
connected with d nodes under every class y ∈ Y , i.e., v totally
has d|Y| neighbors (including a self-loop edge). Let the one-
hot label vector yv be the feature of node v. For each node v,
let Â′ be the augmentation matrix of Â, where Â′ adds edges
between v and other α nodes under the label yv. If α > 0, the
loss on Ĝ′ will be smaller than that on Ĝ:

Lgnn(Mθ, Ĝ
′(V, Â′, X̂,Y)) < Lgnn(Mθ, Ĝ(V, Â, X̂,Y)).

However, adding edges between nodes in one class is a

non-trivial task because node labels are not available under

the black-box setting. Previous works [57], [56] show that

the node labels rely on their features or the graph topology.

Inspired by the literature, we propose to evaluate whether the

nodes in the poison graph are similar from three perspectives:

1) graph topology, 2) node features, 3) self-loops. As illus-

trated in Fig. 4, we propose three augmented graphs, including

a topology graph, a feature graph and an ego graph.

1https://github.com/Refrainlhy/Proof/blob/main/proof.pdf

1022

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 30,2023 at 14:24:37 UTC from IEEE Xplore. Restrictions apply.

(a) Ptb rate=0, Acc=0.83 (b) Ptb rate=0.5, Acc=0.41 (c) Ptb rate=1, Acc=0.31 (d) Ptb rate=5, Acc=0.22

Fig. 3: The similarity among labels on Cora. Ptb rate and Acc denote the perturbation rate and accuracy respectively.

V1

V2

V4

V3

V6

V5

V7

(a) Topology Graph

V1

V2

V4

V3

V6

V5

V7

(b) Feature Graph

V1

V2

V4

V3

V6

V5

V7

(c) Ego Graph

Fig. 4: Three augmented graphs. Nodes with the same color

have the same label, and GNAT adds red edges to form

augmented graphs. v1 is the example node of three graphs.

1) Topology Graph Ĝt: Due to topology modifications, the

1-hop neighbors of nodes in the poison graph Ĝ are likely

to have been disturbed. Assuming that nodes with the same

labels tend to share the same neighbors [58], we add edges

between nodes with its kt-hop neighbors. Given the poison

graph Ĝ(V, Â, X̂), let Ĝt(V, Ât, X̂) be the kt-hop neighbor

augmented graph, where Ât[v][u] = 1 if v can reach u within

kt hops, i.e., Âkt [v][u] 	= 0.

2) Feature Graph Ĝf : To make attack more powerful with

limited budget, existing attackers [31], [25], [24] tend to

attack edges instead of node features (see Sec. V-D1 for more

discussion). In other words, node features are likely to be

trustworthy in the poison graph. Thus, we connect the nodes

with similar feature. Given the poison graph Ĝ(V, Â, X̂),
we calculate the similarity of each node pair v and u by

cosine(x̂v, x̂u). Then, let Ĝf (V, Âf , X̂) be feature augmented

graph, where Âf [v][u] = 1 if u is one of the top-kf similar

nodes of node v.

3) Ego Graph Ĝe: Intuitively, the feature of each node

indicates its label. Thus, we can emphasize the own feature of

nodes by self-loops to alleviate the negative effect of modified

edges. Given the poison graph Ĝ(V, Â, X̂), let Ĝe(V, Âe, X̂)
be the ego augmented graph, where Âe = Â + ke · I,
I ∈ R

|V|×|V| is an identity matrix, and ke is a hyperparameter.

After above graph augmentation, we utilize three augmented

graphs {Ĝt, Ĝf , Ĝe} to jointly train a GCN model Mθ.

Inputting three graphs into Mθ, we can obtain three specific

representations {Zt,Zf ,Ze} from three different but corre-

lated graph views. We then average these three representation

and derive the final representation by Z = (Zt +Zf +Ze)/3.

Finally, given the training label Y, we utilize Z to optimize

the GCN model Mθ following Eq. (2).

TABLE III: The statistics of three datasets.
Cora Citeseer Polblogs

#Nodes 2485 2110 1222
#Edges 5069 3668 16714

#Node Classes 7 6 2
#Train Nodes 248 211 121
#Valid Nodes 249 211 123
#Test Nodes 1988 1688 978

dx 1433 3703 1222

V. EXPERIMENTS

In this section, we compare our black-box attacker PEEGA

and defender GNAT with state-of-the-art baselines. We in-

troduce the experimental settings in Sec. V-A, then show

experimental results of effectiveness and efficiency in Sec. V-B

and Sec. V-C, respectively. Moreover, we provide the ablation

study to analyze our key component in Sec. V-D and present

the parameter sensitivity of our model in Sec. V-E.

A. Experimental Setting

All codes are implemented by PyTorch [59] and experiments

are run on a CentOS 7 machine with a 20-core Intel(R)

Xeon(R) Silver 4210 CPU @ 2.20GHz, 8 NVIDIA GeForce

RTX 2080 Ti GPUs (11G), and 92G of RAM.

1) Task and Datasets: In this paper, we follow [24], [25],

[41] to focus on the node classification task [24], [25], [3],

[41], [42] and evaluate our attacker and defender on three

benchmark datasets, Cora [3], Citeseer [60], and Polbogs [61]

provided by DeepRobust [62]. Specifically, Cora and Citeseer

are citation networks where nodes denote publications, edges

denote citations, and features are bag-of-words representations

of publications. Polbogs is a blog network, where nodes denote

blogs, edges denote citation, and features are the one-hot

format generated by their id. The statistics of these three

datasets are shown in Tab. III. For every dataset, we follow

the setting in [24], [25], [41], [62] that randomly choose 10%

of nodes for training, 10% of nodes for validation, and the

remaining 80% of nodes for testing. And we report the average

accuracy of 10 runs.

2) Baselines: To evaluate the effectiveness of our black-

box attacker and our defender, we first utilize the state-of-

the-art attackers and our proposed attacker to generate the

poison graphs on the three benchmark datasets, and conduct

1023

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 30,2023 at 14:24:37 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Node classification performance (Accuracy±Std) on Cora dataset under 0.1 perturbation rate.

Attackers
GNNs Raw GNNs GNN Defenders

GCN GAT GCN-Jaccard GCN-SVD RGCN Pro-GNN SimPGCN GNAT

Clean Graph 83.36±0.19 84.01±0.35 82.33±0.29 78.33±0.33 83.74±0.14 83.26±0.27 83.39±0.52 (85.52±0.15)

White-box PGD 80.96±0.83 84.41±0.50 80.52±0.55 77.52±0.57 78.18±0.52 82.39±0.76 81.45±1.09 (84.77±0.20)
MinMax 78.89±1.34 80.69±1.42 78.84±0.31 77.41±0.70 78.21±0.67 82.57±0.41 77.19±0.83 (83.89±0.19)

Gray-box Metattack 72.83±0.29 75.56±0.38 75.99±0.78 73.69±0.51 72.47±0.78 80.26±0.28 75.18±1.20 (81.44±0.13)

Black-box GF-Attack 83.72±0.42 83.88±0.40 82.28±0.48 78.21±0.22 83.53±0.39 82.22±0.18 82.42±0.23 (85.41±0.12)
PEEGA 75.31±0.75 77.79±0.82 76.06±0.06 77.02±0.06 75.64±0.07 81.99±0.73 76.51±0.30 (83.12±0.43)

TABLE V: Node classification performance (Accuracy±Std) on Citeseer dataset under 0.1 perturbation rate.

Attackers
GNNs Raw GNNs GNN Defenders

GCN GAT GCN-Jaccard GCN-SVD RGCN Pro-GNN SimPGCN GNAT

Clean Graph 72.03±0.61 73.75±0.41 72.46±0.55 70.01±0.25 72.13±0.66 73.26±0.57 73.12±0.68 (76.39±0.12)

White-box PGD 70.89±0.84 72.65±0.43 71.17±0.97 68.18±1.36 70.15±1.43 72.35±0.33 73.32±1.06 (76.36±0.15)
MinMax 70.46±0.97 72.14±0.74 70.53±0.26 68.24±0.32 67.51±0.90 71.53±0.67 72.51±1.26 (75.54±0.13)

Gray-box Metattack 67.33±0.91 70.70±0.14 69.23±1.01 68.99±0.77 67.86±0.54 72.63±0.89 72.77±0.49 (75.57±0.42)

Black-box GF-Attack 71.95±0.80 72.93±0.89 72.19±0.55 70.21±0.17 71.75±0.75 73.03±0.46 73.44±0.99 (76.21±0.25)
PEEGA 66.20±0.37 69.37±0.42 67.17±0.40 67.46±0.32 67.12±0.37 71.14±0.24 72.21±0.16 (75.27±0.19)

evaluations by training our defender and the state-of-the-art

GNN defenders on these poison graphs.

First, we compare the proposed PEEGA with advanced

GNN attackers on the scenario of untargeted attacks and

black-box settings (i.e., only A and X are available). In

particular, some baselines in Tab. I are not included in compar-

isons because: the gray-box attacker Nettack [25] is designed

specifically for targeted attacks; the black-box attackers RL-

S2V [36] and ReWatt [26] require GNN predictions; the exper-

imental implementations of black-box attackers InfMax2[34]

and RWCS3[33], access the GNN parameters and node labels

to estimate the importance of node features. The baselines of

attackers in this paper are listed as follows:

• PGD [31]: Projected gradient descent (PGD) first pre-

trains the target GNN model, fixes its parameters, and then

modifies the graph topology based on gradient projection.

• MinMax [31]: Different from PGD, MinMax modifies

graph topology and optimizes the target GNN iteratively.

• Metattack [24]: Metattack utilizes meta-gradients to solve

the bi-level optimization problem to optimize graph topol-

ogy. Here we use its most destructive variant, Meta-Self.

• GF-Attack [63]: GF-Attack can be intrinsically extended

to the scenario of untargeted attacks by computing the score

of all attack candidates and then select attacks accordingly.

• PEEGA: PEEGA is our proposed pure black-box attacker

that only takes adjacency matrix A and node feature X
as inputs, and maximizes the difference between node

representations from the self-view and global view.

Additionally, we choose seven GNNs as baselines to evaluate

poison graphs. Specifically, GCN [3] and GAT [4] are raw

GNNs. GCN-Jaccard [32], RGCN [39], GCN-SVD [64], Pro-

GNN [41], and SimPGCN [42] are GNN defenders, which are

proposed to resist adversarial attacks for raw GNNs.

• GCN [3]: Graph Convolutional Network (GCN) learns

node representation by a set of spectral layers, which is

the representative one among various GNNs.

2https://github.com/TheaperDeng/GNN-Attack-InfMax
3https://github.com/Mark12Ding/GNN-Practical-Attack

• GAT [4]: Graph Attention Network (GAT) incorporates the

attention mechanism to learn the relative weight between

each pair of connected nodes to resist attacks.

• GCN-Jaccard [32]: GCN-Jaccard proposes removing

edges if the connected nodes’ Jaccard similarity is lower

than a pre-defined threshold.

• RGCN [39]: RGCN models node representations as Gaus-

sian distributions to defense against adversarial attacks. It

also incorporates attention mechanism [44] to alleviate the

negative impact of adversarial edges.

• GCN-SVD [64]: GCN-SVD approximates the poison graph

topology into low rank, which is based on the observation

that attackers will increase the rank of graph topology.

• Pro-GNN [41]: Pro-GNN optimizes the GNN parameters

and learn graph structure jointly by preserving the smooth-

ness, low-rank, and sparsity properties of graphs.

• SimPGCN [42]: SimPGCN resists adversarial attacks by

preserving node similarity and learning node representa-

tions adaptively from graph structure and node features.

• GNAT: GNAT is the GNN defender proposed in this paper.

To resist attacks, we propose three augmented graphs to

make the context more distinguishable.

3) Hyper-parameter Setting: For attacker baselines, we use

their default hyper-parameter setting. For PEEGA, we tune λ
from {0, 0.05, 0.01, 0.015, 0.02, 0.025, 0.03}, and tune norm p
from {1, 2, 3}. We set the modification budget δ = r · ‖A‖0,

where r ∈ {0.05, 0.1, 0.15, 0.2} is the perturbation rate.

Following [24], we compute the objective on training nodes.

Moreover, for defenders, we use the default setting of

GCN, GAT, SimPGCN, and Pro-GNN in the authors’ im-

plementation. For RGCN, we tune the number of hidden

units from {16, 32, 64, 128}. For GNN-Jaccard, we tune

the similarity threshold for removing dissimilar edges from

{0.01, 0.02, 0.03, 0.04, 0.05, 1}. For GCN-SVD, we tune the

reduced rank of poison graphs from {5, 10, 15, 50, 100, 200}.

For GNAT, we utilize GCN as the training model and tune

kt, kf , and ke in three augmented graphs from {0, 1, 2},

{0, 5, 10, 15, 20}, and {0, 5, 10, 15, 20}, respectively.

1024

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 30,2023 at 14:24:37 UTC from IEEE Xplore. Restrictions apply.

TABLE VI: Node classification performance (Accuracy±Std) on Polblogs dataset under 0.1 perturbation rate.

Attackers
GNNs Raw GNNs GNN Defenders

GCN GAT GCN-SVD RGCN Pro-GNN SimPGCN GNAT\f1

Clean Graph (95.79±0.20) 95.22±0.41 94.84±0.07 95.34±0.15 95.33±0.12 95.56±0.17 95.70±0.09

White-box PGD 85.78±0.76 92.09±1.93 89.12±1.27 81.52±1.06 87.08±0.11 84.04±1.44 (89.43±0.33)
MinMax 77.38±2.83 87.02±0.96 87.58±2.33 81.16±1.54 87.68±0.94 72.06±3.26 (88.62±0.31)

Gray-box Metattack 80.32±0.34 88.44±0.37 89.98±0.22 80.43±0.29 93.46±0.17 77.24±0.25 (93.31±0.21)

Black-box GF-Attack 94.94±0.05 96.19±0.22 94.32±0.23 95.37±0.15 95.42±0.08 94.87±0.24 (95.62±0.12)
PEEGA 72.57±0.88 81.15±0.65 80.23±0.26 74.18±0.22 75.26±0.66 71.51±0.88 (82.61±0.21)

1 GCN-Jaccard and our feature augmented graph cannot be directly applied on Polblogs because its node features are an identity matrix,
where the similarity measurement is not applicable.

B. Effectiveness Evaluation

We report the performance of GNN attackers and GNN

defenders in Tab. IV, V, and VI. The row of clean graph

reports the performance of raw GNNs and GNN defenders

trained on the clean graph. Others report the performance of

a specific GNN (in the column) trained on the poison graph

produced by the GNN attacker (in the row). First, attackers

target to make the raw GNNs or GNN defenders achieve the

low accuracy, i.e., the lower performance, the more powerful

an attacker is. Bold number indicates the lowest accuracy

among attack models under the same GNN defender (the more

bold number has, the stronger attacker’s ability is). Second,

GNN defenders target to achieve high accuracy on the clean

or poison graphs. Under one attacker, we mark the highest

accuracy among GNN defenders with “()”, i.e., the more

number of “()”, the stronger ability of the GNN model is.

1) Evaluation on the Performance of Attackers: Note that

under one GNN defender, the lower accuracy indicates the

better attack performance of a GNN attacker. First, almost all

GNNs achieve the highest accuracy on the clean graph, which

indicates that GNN attackers can reduce the performance of

GNN more or less. Compared with white-box and gray-box

attackers, the black-box attacker GF-Attack marginally reduces

performance. That is because GF-Attack attacks graphs by

maximizing the higher rank value of node representations,

which is not directly degrade the performance of GNNs. It is

worth noting that Metattack and PEEGA generally outperform

white-box attackers MinMax and PGD. That is because, unlike

Metattack and PEEGA that greedily select attacks, MinMax

and PGD first compute the score of each candidate attack and

then choose all attacks at one time, which does not consider

the dependency among attacks.

Furthermore, PEEGA only needs A and X as model inputs

while Metattack requires one more input: the node label Y.

But PEEGA achieves comparable results in Cora, and the

best attacking performance on Citeseer and Polbogs. This

is because PEEGA measures the node difference before and

after attack (see Sec. III-A), which is most related to model

predictions. Note that PEEGA treats the node features at each

dimension uniformly, while Metattack can measure the im-

portance of node features in each dimension via the guidance

of node labels. In Cora, only a part of node features may be

relevant to the node labels, i.e., these unproductive features

may introduce some noises into PEEGA. As for Polbogs, it

only has an identity matrix as node features, with each node

having only one critical identical feature. As a result, PEEGA

outperforms Metattack significantly.

TABLE VII: The running time (seconds) of attackers under

perturbation rate of 0.1. Bold number means the best one

and underline number means the second better one.
Cora Citeseer Polblogs

PGD 28.87± 1.80 26.18± 0.86 8.13± 0.07
MinMax 50.52± 3.11 47.34± 1.28 12.74± 0.32

Metattack 439.09± 7.89 378.42± 4.22 630.61± 11.93
GF-Attack 890.77± 10.85 1245.53± 40.63 252.97± 11.01

PEEGA 18.76± 0.80 15.42± 0.37 18.17± 0.36

2) Evaluation on the Performance of Defenders: Note that

under one GNN attacker, the higher accuracy indicates better

defense performance. GCN-Jaccard and GCN-SVD perform

worse among GNN defenders because simply preprocessing

poison graphs cannot recover graphs from crafted poison

graphs [41] and make learned node representations more

distinguishable. Because of the error propagation problem,

RGCN, Pro-GNN, and SimPGCN cannot perform better. They

build a GNN model on the poison graph and then utilize

the trained GNN to defend against attacks by re-weighting

edges or reconstructing the graph structures. However, they

cannot prevent the negative effect of attacks on the start

of GNN training, which propagates error to the process of

edge re-weighting and graph structure reconstruction [65],

[66]. In this paper, Sec. IV-A analyzes the tendencies of

GNN attackers, i.e., adding edges between nodes of difference

classes to make nodes indistinguishable. Therefore, GNAT

proposes three augmentation graphs (i.e., adds edges into the

poison graphs) to against such attacks. As a result, GNAT is

able to recognize nodes with different labels, and consistently

outperforms defense baselines under the clean graph and the

poison graphs produced by different GNN attackers.

C. Efficiency Evaluation

1) Evaluation on the Efficiency of Attackers: Tab. VII

illustrates the poison graph generating time of each attack

model on the three datasets under the perturbations rate of

0.1. GF-Attack is much slower than others methods because

it utilizes SVD to evaluate the effect of each candidate edge,

which is time-consuming. As discussed in Sec. II-B, the white-

box attackers (PGD and MinMax) and gray-box attackers

(Metattack) formulate the bi-level objective, which require

updating the GNN parameters in low-level. But PEEGA

formulates a single-level optimization goal (see Def. 3) and

proposes an efficient greedy-based algorithm, thereby it is

generally more efficient than PGD, MinMax, and Metattack.

In particular, PEEGA is a little slow in Polbogs because it

targets to enlarge the difference between node representations

1025

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 30,2023 at 14:24:37 UTC from IEEE Xplore. Restrictions apply.

TABLE VIII: The training time (seconds) evaluation of de-

fense models on the three datasets. Bold number means the

best one and underline number means the second better one.
Cora Citeseer Polblogs

GCN 0.56± 0.16 0.49± 0.13 0.55± 0.08
GAT 2.02± 0.42 1.89± 0.35 2.31± 0.30

GCN-Jaccard 1.20± 0.19 1.11± 0.30 1.49± 0.40
GCN-SVD 7.01± 1.10 7.73± 0.67 5.43± 0.47

RGCN 1.14± 0.07 1.12± 0.06 1.12± 0.11
Pro-GNN 1326.22± 25.15 878.11± 10.09 330.07± 4.49
SimPGCN 2.82± 0.20 2.27± 0.28 2.45± 0.26

GNAT 0.98± 0.10 0.87± 0.08 0.81± 0.07

(a) The accuray of different attacks. (b) Evalutaion on Cora.

Fig. 5: Ablation study on different attacks in PEEGA.

and its neighbors. But Polblogs is denser than the other two

graphs, which takes more time.

2) Evaluation on the Efficiency of Defenders: Tab. VIII

illustrates the training time of defenders on the three datasets.

We only report their running time on the clean graphs since

similar observations are obtained in poison graphs. We observe

that our approach is slightly slower than GCN. That is because

GNAT creates three augmented graphs and train them on the

GCN model. But GNAT is efficient than other baselines due

to their customized designs. Specifically, GAT and RGCN

incorporate the attention mechanism to measure the weights

among connected nodes, SimPGCN needs to construct the

similarity graph topology matrix in the training process, and

GCN-SVD uses SVD to approximate a low-rank graph topol-

ogy. Moreover, Pro-GNN jointly optimizes GNN parameters

and learns graph structure, which is heavily time-consuming.

D. Ablation Study

1) Evaluation on Different Attacks in PEEGA: To evaluate

the effect of topology modifications and feature perturbations,

we use GCN to evaluate PEEGA, i.e., GCN+P, under the

perturbation rate r = 0.1. We mainly compare three variants:

FP, TM, and TM+FP, implying that PEEGA attacks graphs ex-

clusively via the feature perturbation (FP), topology modifica-

tion (TM), and their combinations (FP+TM). As illustrated in

Fig. 5 (a), TM and TM+FP produce almost the same effective

results, indicating that FP contributes little in generating effec-

tive attacks. We infer that such observation is caused by the

settings of existing attackers. In the attack budget δ, existing

works assume that the costs of feature perturbations and edge

modifications are equal, i.e.,
∥∥∥Â−A

∥∥∥
0
+

∥∥∥X̂−X
∥∥∥
0
≤ δ.

However, each edge modification affects the message passing

of node features, whereas each feature perturbation affects

TABLE IX: Ablation study of defenders. Bold number indi-

cates the best performance.
Cora Citeseer Polblogs

GNAT-t 82.28± 0.19 74.13± 0.10 79.72± 0.56
GNAT-f 71.16± 0.09 72.20± 0.37 -
GNAT-e 76.29± 0.64 68.09± 0.53 73.42± 0.76
GNAT-t+f 82.68± 0.21 74.38± 0.20 -
GNAT-t+e 82.75± 0.76 73.83± 0.25 82.61± 0.21
GNAT-f+e 78.99± 0.24 73.68± 0.15 -
GNAT-t+f+e 83.12± 0.43 75.27± 0.19 -
GNAT-tf 80.08± 0.01 73.06± 0.05 -
GNAT-te 80.16± 0.64 70.36± 0.85 76.34± 0.33
GNAT-fe 71.83± 0.33 72.18± 0.12 -
GNAT-tfe 82.91± 0.13 73.82± 0.54 -

only one feature dimension. Thus, feature perturbations are

less effective than topology modifications under the same cost.

To further verify this idea, we conduct an ablation study

to investigate the influence of different feature perturbation

cost, such that
∥∥∥Â−A

∥∥∥
0
+ β

∥∥∥X̂−X
∥∥∥
0
≤ δ where β ∈

{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}, and normalize the

feature perturbation score Sf = Sf/β . In Fig. 5 (b) (check

the green line and right y-axis), as β increases, the number

of feature modifications (the green dot-line) decreases, and

the number of topology modifications (the green solid-line)

increases. Then, GCN and GNAT are evaluated on the poison

graphs produced by PEEGA with various β, i.e., GCN+P

and GNAT+P. We observe that the accuracy of GCN (the

red solid-line) decreases initially and then increases. This

indicates that when the feature perturbation cost is appropriate,

the combinations of feature and topology attacks are the

most effective. Additionally, GNAT (the red dot-line) performs

consistently as the best one, indicating that it can defense

against a wide variety of feature perturbations and topology

modifications. We only report experimental results on Cora

since similar results are made on other data sets.

2) Evaluation on Augmented Graphs: Here we evaluate

the effectiveness of different augmented graphs in GNAT. We

poison graphs by PEEGA at 0.1 perturbation rate. In Sec. IV-B,

we propose three augmented graphs, i.e., topology graph (t),

feature graph (f), and ego graph (e), to make nodes more

distinguishable. We create three type variants of GNAT: (1)

Single graph: GCN is trained on the single graph, i.e., GNAT-

t, GNAT-f, and GNAT-e. (2) Multiple graphs: GCN is trained

on multiple graphs, i.e., GNAT-t+f, GNAT-t+e, GNAT-f+e, and

GNAT-t+f+e. (3) Merged graph: to verify the help of correlated

views, we merge multiple augmented graphs into one graph

that contains all edges in the multiple graphs. We obtain four

variants, i.e., GNAT-tf, GNAT-te, GNAT-fe, and GNAT-tfe.

Evaluations on three datasets are shown in Tab. IX. Note

that the feature graph (f) for Polblogs is not available, since

the node features of Polblogs are an identity matrix and the

cosine similarity between nodes is all zero. First, the variants

trained on multiple graphs are better than their subset version

on any data set. For example, GNAT-f+e is better than GNAT-

f and GNAT-e, and GNAT-t+f+e is better than GNAT-t+f,

GNAT-t+e, and GNAT-f+e. This indicates that any proposed

augmented graph can improve the performance of GNNs.

Moreover, the variants trained in merged graphs are worse than

1026

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 30,2023 at 14:24:37 UTC from IEEE Xplore. Restrictions apply.

(a) Cora dataset. (b) Citeseer dataset. (c) Polblogs dataset.

Fig. 6: The evaluation of attackers and defenders under different perturbation rate.

(a) Effect of contraint nodes. (b) Effect of layer number.

Fig. 7: Hyperparamter evaluation on Citeseer dataset.

(a) The hyperparamter λ. (b) The norm p.

Fig. 8: Hyperparamter evaluation of PEEGA.

their corresponding variants in multiple graphs. For example,

GNAT-te is lower than GNAT-t+e on three datasets. It indicates

that providing different but correlated graph views instead of

merging then into one graph can improve performance.

E. Parameter Sensitivity Evaluation
1) Perturbation Rate Evaluation on Attack and Defense

Model: Recall that the attacking budget δ = r · ‖A‖0 is con-

trolled by the perturbation rate r. Here we study the influence

of different perturbation rates r ∈ {0, 0.05, 0.1, 0.15, 0.20} as

shown in Fig. 6. For simplicity and clarification, we only

include the representative GCN and the best baselines in

Tab. IV, V, and VI, i.e., the GNN attacker Metattack and

GNN defender Pro-GNN. Specifically, we first utilize PEEGA

and Metattack to generate poison graphs, and then train GCN,

Pro-GNN, and GNAT on them. We utilize [GNN]+[Attack]

to denote each variant. For example, GCN+M and GCN+P

indicate that GCN is trained on the poison graph generated by

Metattack and PEEGA, respectively.
Generally, the performance of all GNN models decreases

with the increase of the perturbation rate. In the attack view,

PEEGA can reduce performance more than Metattack on

Citeseer and Polblogs, i.e., the solid-line (PEEGA) is under the

dot-line (Metattack) in the same color (one defender). In Cora

dataset, PEEGA has a little inferior attack performance than

Metattack, i.e., the solid-line (PEEGA) is above the dot-line

(Metattack) in the same color (one defender). As discussed

in Sec. V-B1, Metattack can measure the relevance of node

features in each dimension regarding node labels, whereas

PEEGA is not. In the defense view, GNAT can generally

achieve better performance on all datasets, i.e., green line

(GNAT) is above the blue line (ProGNN) and red line (GCN).

Note that GNAT+P does perform well on the Polbogs dataset.

That is because feature augmented graph is not available on

Polbogs, which decreases the power of GNAT. In summary,

GNAT performs more stable than GCN and Pro-GNN on

different perturbation rates.

2) Parameter Sensitivity on the Rate of Attacker Nodes: As

discussed in Sec. II-B and Tab. I, some of existing attackers

set the predefined nodes that attackers have the access to

modify. Here we test the effectiveness of PEEGA on the

scenario of predefined available attacker nodes. The rate of

accessible nodes ranges from 0.1 to 1. We first use PEEGA and

Metattack to attack the accessible nodes, and then use GCN to

defend against PEEGA (GCN+P) and Metattack (GCN+M).

As shown in Fig. 7 (a), as the rate of accessible nodes

increases, the accuracy of GCN under both attackers decreases,

which indicates the power of attackers will increase with

more accessible nodes. Moreover, at the same rate, PEEGA

(blue dot-line) outperforms Metattack (red dot-line), which

demonstrates its effectiveness.

3) Parameter Sensitivity on Layer Number: In Eq. (7),

we use A2
nX to surrogate GNNs. To show the generality of

PEEGA, we evaluate the variants of PEEGA to surrogate the

information propagation with different hops of neighborhoods,

i.e., AnX, A2
nX, A3

nX, and A4
nX. We first use PEEGA with

different layers (i.e., PEEGA l), Metattack [24], and MinMax

[31] to poison graphs, and then use GCN with various layers

(x-axis) to evaluate them. Note that for clarity, we only plot

Metattack and MinMax with 2 layers, because these two

variants can achieve the best or similar performance compared

with their other variants, respectively. As shown in Fig. 7 (b),

the PEEGA variants with l = 2, 3, 4 generally achieve the

better or competitive performance compared with Metattack

and MinMax in attacking different GCNs.

Moreover, PEEGA 2 performs the best among PEEGA

1027

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 30,2023 at 14:24:37 UTC from IEEE Xplore. Restrictions apply.

Fig. 9: Hyperparamter evaluation of our proposed defender GNAT on the Citeseer dataset.

variants. That is because the node label is largely determined

by its local structure, as evidenced by GCN’s accuracy on

clean graphs. It indicates that node representations learned

from the two hops can distinguish nodes from others with

different labels, while exploring neighbors in more hops due to

the over-smoothing problem [67], [68], [69]. Correspondingly,

PEEGA 2 is the most effective because it destroys the best

node representations that can reveal node labels. We can

observe that PEEGA 1 performs poorly. This is because

PEEGA 1 only considers the 1-hop neighbors of each node,

which is insufficient for conducting effective attacks.

4) Parameter Sensitivity on λ and p : We use GCN to

evaluate the effect of the trade-off parameter λ between self-

view and global view, and the norm of distance p in Eq. (8).

In Fig. 8 (a), as λ increases, the performance of GCN on

three datasets first decreases and then increases. It indicates

that enlarging representation differences between nodes and

its neighbors can increase the attack power, since it potentially

let nodes with the same label have different representations.

Besides, larger λ will overvalue neighbors, which may cause

nodes with different labels to become more distinct and thus

reduce attack power, due to the fact that not all neighbors have

the same label with each node. Particularly, the best λ on Cora

and Citeseer is smaller than Polbogs, because the proportion of

edges whose connected nodes have the same label is smaller

than that in Polbogs. Besides, in Fig. 8 (b), the best choices for

p on Cora and Citeseer are both 2, while the best p for Polbogs

is 1. It is because node features in Polbogs are an identity

matrix, where each node have a unique dimension. Therefore,

the semantic meaning of node representation is more sensitive

to the aggregated feature difference.

5) Parameter Sensitivity on Augmented Graphs: We eval-

uate the effect of kt (topology graph), kf (feature graph),

and ke (ego graph) of GNAT. Specifically, we use PEEGA

to generate poison graphs under 0.1 perturbation rate. Since

similar observations are made on other graphs, we only report

results on Citeseer. The default setting of {kt, kf , ke} is {2, 15,

10}. When we evaluate one parameter, we set others as default.

As shown in Fig. 9, as three parameters increase, the accuracy

of GNAT trained on their single graph or combinations first

increases and then decreases. It demonstrates that our defender

can make nodes more distinguishable by connecting nodes

with the same labels. Besides, as kt and kf increase, nodes

will connect more dissimilar nodes, which introduces noise.

As ke increases, the GNN will emphasize the own feature of

nodes and overlook the information from its local structure.

Therefore, the accuracy will decrease.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose PEEGA, a pure black-box GNN

attacker that only accesses graph topology and node features

when attacking graphs. To enable both topology modifications

and feature perturbations, we propose to qualify the negative

impact of attacks on node representations and then formulate

a single-level objective. Moreover, we observe that effective

attackers degrade GNN performance by obscuring node con-

text. We then propose GNAT, a GNN defender based on graph

augmentation, which improves the robustness of GNNs by

making node context more distinguishable. The effectiveness

and efficiency of our proposed attacker and defender are shown

by experiments on three real-world datasets.

As for future works, this work can be further improved.

Due to the sequential attack process in Alg. 1, the time com-

plexity increases linearly with the size of budget. Inspired by

PTDNet [70], Gumbel-Softmax sampling [71], which samples

attacks in a parallel manner, is a potential solution to make

the attack process more efficient. Recently, such technique

has been employed into another bi-level optimization problem

in GNNs [72], i.e., automated GNN designs [73], [74], [75].

Second, the proposed defender GNAT only adds edges into

the poison graph to defend against adversarial attacks. We

may remove some noises in the poison graph introduced by

attackers. Leveraging the knowledge of adding and removing

can further boost the performance of GNAT. We leave these

improvements in the future work.

VII. ACKNOWLEDGEMENT

This work is partially supported by National Key Re-

search and Development Program of China Grant No.

2018AAA0101100, the Hong Kong RGC GRF Project

16202218, CRF Project C6030-18G, C1031-18G, C5026-18G,

AOE Project AoE/E-603/18, RIF Project R6020-19, Theme-

based project TRS T41-603/20R, China NSFC No. 61729201,

Guangdong Basic and Applied Basic Research Foundation

2019B151530001, Hong Kong ITC ITF grants ITS/044/18FX

and ITS/470/18FX, Microsoft Research Asia Collaborative

Research Grant, HKUST-NAVER/LINE AI Lab, Didi-HKUST

joint research lab, HKUST-Webank joint research lab grants.

1028

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 30,2023 at 14:24:37 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] B. D. McKay and A. Piperno, “Practical graph isomorphism, ii,” Journal
of symbolic computation, vol. 60, pp. 94–112, 2014.

[2] P. Ribeiro, P. Paredes, M. E. Silva, D. Aparicio, and F. Silva, “A survey
on subgraph counting: Concepts, algorithms and applications to network
motifs and graphlets,” arXiv preprint arXiv:1910.13011, 2019.

[3] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[4] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[5] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in neural information processing
systems, 2017, pp. 1024–1034.

[6] H. Liu, S. Lu, X. Chen, and B. He, “G3: when graph neural networks
meet parallel graph processing systems on gpus,” Proceedings of the
VLDB Endowment, vol. 13, no. 12, pp. 2813–2816, 2020.

[7] R. Zhu, K. Zhao, H. Yang, W. Lin, C. Zhou, B. Ai, Y. Li, and
J. Zhou, “Aligraph: a comprehensive graph neural network platform,”
arXiv preprint arXiv:1902.08730, 2019.

[8] D. Luo, W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen, and X. Zhang,
“Parameterized explainer for graph neural network,” arXiv preprint
arXiv:2011.04573, 2020.

[9] H. Li and L. Chen, “Cache-based gnn system for dynamic graphs,” in
Proceedings of the 30th ACM International Conference on Information
& Knowledge Management, 2021, pp. 937–946.

[10] W. Zhang, Y. Shen, Y. Li, L. Chen, Z. Yang, and B. Cui, “Alg: Fast and
accurate active learning framework for graph convolutional networks,”
in Proceedings of the 2021 International Conference on Management of
Data, 2021, pp. 2366–2374.

[11] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” arXiv preprint arXiv:1810.00826, 2018.

[12] C. T. Duong, T. D. Hoang, H. Yin, M. Weidlich, Q. V. H. Nguyen,
and K. Aberer, “Efficient streaming subgraph isomorphism with graph
neural networks,” Proceedings of the VLDB Endowment, vol. 14, no. 5,
pp. 730–742, 2021.

[13] X. Liu and Y. Song, “Graph convolutional networks with dual mes-
sage passing for subgraph isomorphism counting and matching,” arXiv
preprint arXiv:2112.08764, 2021.

[14] X. Liu, H. Pan, M. He, Y. Song, X. Jiang, and L. Shang, “Neural
subgraph isomorphism counting,” in Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2020, pp. 1959–1969.

[15] Z. Chen, L. Chen, S. Villar, and J. Bruna, “Can graph neural networks
count substructures?” arXiv preprint arXiv:2002.04025, 2020.

[16] Z. Xing and S. Tu, “A graph neural network assisted monte carlo tree
search approach to traveling salesman problem,” IEEE Access, vol. 8,
pp. 108 418–108 428, 2020.

[17] M. Prates, P. H. Avelar, H. Lemos, L. C. Lamb, and M. Y. Vardi,
“Learning to solve np-complete problems: A graph neural network
for decision tsp,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, no. 01, 2019, pp. 4731–4738.

[18] C. Gao, Y. Zheng, N. Li, Y. Li, Y. Qin, J. Piao, Y. Quan, J. Chang,
D. Jin, X. He et al., “Graph neural networks for recommender systems:
Challenges, methods, and directions,” arXiv preprint arXiv:2109.12843,
2021.

[19] Z. Wang, H. Zhao, and C. Shi, “Profiling the design space for graph
neural networks based collaborative filtering.”

[20] Y. Zhang and Q. Yao, “Knowledge graph reasoning with relational
directed graph,” arXiv preprint arXiv:2108.06040, 2021.

[21] Anonymous, “Message function search for hyper-relational knowledge
graph,” in Submitted to The Tenth International Conference on
Learning Representations, 2022, under review. [Online]. Available:
https://openreview.net/forum?id=CQzlxFVcmw1

[22] W. Zhang, X. Miao, Y. Shao, J. Jiang, L. Chen, O. Ruas, and B. Cui, “Re-
liable data distillation on graph convolutional network,” in Proceedings
of the 2020 ACM SIGMOD International Conference on Management
of Data, 2020, pp. 1399–1414.

[23] L. Wei, H. Zhao, and Z. He, “Designing the topology of graph
neural networks: A novel feature fusion perspective,” arXiv preprint
arXiv:2112.14531, 2021.

[24] D. Zügner and S. Günnemann, “Adversarial attacks on graph neural
networks via meta learning,” arXiv preprint arXiv:1902.08412, 2019.

[25] D. Zügner, A. Akbarnejad, and S. Günnemann, “Adversarial attacks
on neural networks for graph data,” in Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2018, pp. 2847–2856.

[26] Y. Ma, S. Wang, T. Derr, L. Wu, and J. Tang, “Attacking graph
convolutional networks via rewiring,” arXiv preprint arXiv:1906.03750,
2019.

[27] L. Sun, Y. Dou, C. Yang, J. Wang, P. S. Yu, L. He, and B. Li,
“Adversarial attack and defense on graph data: A survey,” arXiv preprint
arXiv:1812.10528, 2018.

[28] W. Jin, Y. Li, H. Xu, Y. Wang, and J. Tang, “Adversarial attacks and
defenses on graphs: A review and empirical study,” arXiv e-prints, pp.
arXiv–2003, 2020.

[29] X.-Y. Li, C. Zhang, T. Jung, J. Qian, and L. Chen, “Graph-based privacy-
preserving data publication,” in IEEE INFOCOM 2016-The 35th Annual
IEEE International Conference on Computer Communications. IEEE,
2016, pp. 1–9.

[30] S. De Capitani Di Vimercati, S. Foresti, G. Livraga, and P. Samarati,
“Data privacy: definitions and techniques,” International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 20, no. 06,
pp. 793–817, 2012.

[31] K. Xu, H. Chen, S. Liu, P.-Y. Chen, T.-W. Weng, M. Hong, and
X. Lin, “Topology attack and defense for graph neural networks: An
optimization perspective,” arXiv preprint arXiv:1906.04214, 2019.

[32] H. Wu, C. Wang, Y. Tyshetskiy, A. Docherty, K. Lu, and L. Zhu,
“Adversarial examples on graph data: Deep insights into attack and
defense,” arXiv preprint arXiv:1903.01610, 2019.

[33] J. Ma, S. Ding, and Q. Mei, “Black-box adversarial attacks on
graph neural networks with limited node access,” arXiv preprint
arXiv:2006.05057, 2020.

[34] J. Ma, J. Deng, and Q. Mei, “Near-black-box adversarial attacks on
graph neural networks as an influence maximization problem,” 2021.
[Online]. Available: https://openreview.net/forum?id=sbyjwhxxT8K

[35] H. Chang, Y. Rong, T. Xu, W. Huang, H. Zhang, P. Cui, W. Zhu, and
J. Huang, “A restricted black-box adversarial framework towards attack-
ing graph embedding models,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, no. 04, 2020, pp. 3389–3396.

[36] H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song, “Ad-
versarial attack on graph structured data,” in International conference
on machine learning. PMLR, 2018, pp. 1115–1124.

[37] W. Jin, Y. Li, H. Xu, Y. Wang, S. Ji, C. Aggarwal, and J. Tang, “Ad-
versarial attacks and defenses on graphs,” ACM SIGKDD Explorations
Newsletter, vol. 22, no. 2, pp. 19–34, 2021.

[38] X. Xu, Y. Yu, B. Li, L. Song, C. Liu, and C. Gunter, “Characterizing
malicious edges targeting on graph neural networks,” 2018.

[39] D. Zhu, Z. Zhang, P. Cui, and W. Zhu, “Robust graph convolutional
networks against adversarial attacks,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2019, pp. 1399–1407.

[40] X. Zhang and M. Zitnik, “Gnnguard: Defending graph neural networks
against adversarial attacks,” arXiv preprint arXiv:2006.08149, 2020.

[41] W. Jin, Y. Ma, X. Liu, X. Tang, S. Wang, and J. Tang, “Graph structure
learning for robust graph neural networks,” in Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 2020, pp. 66–74.

[42] W. Jin, T. Derr, Y. Wang, Y. Ma, Z. Liu, and J. Tang, “Node similarity
preserving graph convolutional networks,” in Proceedings of the 14th
ACM International Conference on Web Search and Data Mining, 2021,
pp. 148–156.

[43] A. Zhang and J. Ma, “Defensevgae: Defending against adversarial
attacks on graph data via a variational graph autoencoder,” arXiv preprint
arXiv:2006.08900, 2020.

[44] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[45] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation
functions,” arXiv preprint arXiv:1710.05941, 2017.

[46] W. Huang et al., “Adaptive sampling towards fast graph representation
learning,” in Advances in neural information processing systems, 2018,
pp. 4558–4567.

[47] W. Huang, Y. Rong, T. Xu, F. Sun, and J. Huang, “Tackling over-
smoothing for general graph convolutional networks,” arXiv preprint
arXiv:2008.09864, 2020.

1029

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 30,2023 at 14:24:37 UTC from IEEE Xplore. Restrictions apply.

[48] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transactions
on neural networks and learning systems, 2020.

[49] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, “Graph neural networks: A review of methods and applications,”
AI Open, vol. 1, pp. 57–81, 2020.

[50] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,”
IEEE Transactions on Knowledge and Data Engineering, 2020.

[51] T. Rowland, “Operator norm.” [Online]. Available: https://mathworld.
wolfram.com/OperatorNorm.html

[52] Y. Ma, X. Liu, N. Shah, and J. Tang, “Is homophily a necessity for
graph neural networks?” arXiv preprint arXiv:2106.06134, 2021.

[53] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang, “Graph contrastive
learning with adaptive augmentation,” in Proceedings of the Web Con-
ference 2021, 2021, pp. 2069–2080.

[54] T. Zhao, Y. Liu, L. Neves, O. Woodford, M. Jiang, and N. Shah,
“Data augmentation for graph neural networks,” arXiv preprint
arXiv:2006.06830, 2020.

[55] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph con-
trastive learning with augmentations,” Advances in Neural Information
Processing Systems, vol. 33, 2020.

[56] X. Wang, M. Zhu, D. Bo, P. Cui, C. Shi, and J. Pei, “Am-gcn: Adaptive
multi-channel graph convolutional networks,” in Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 2020, pp. 1243–1253.

[57] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka,
“Representation learning on graphs with jumping knowledge networks,”
in International Conference on Machine Learning. PMLR, 2018, pp.
5453–5462.

[58] S. Nandanwar and M. N. Murty, “Structural neighborhood based clas-
sification of nodes in a network,” in Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2016, pp. 1085–1094.

[59] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, pp. 8026–8037, 2019.

[60] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-
Rad, “Collective classification in network data,” AI magazine, vol. 29,
no. 3, pp. 93–93, 2008.

[61] L. A. Adamic and N. Glance, “The political blogosphere and the 2004
us election: divided they blog,” in Proceedings of the 3rd international
workshop on Link discovery, 2005, pp. 36–43.

[62] Y. Li, W. Jin, H. Xu, and J. Tang, “Deeprobust: A pytorch library
for adversarial attacks and defenses,” arXiv preprint arXiv:2005.06149,
2020.

[63] H. Chang, Y. Rong, T. Xu, W. Huang, H. Zhang, P. Cui, W. Zhu,
and J. Huang, “A restricted black-box adversarial framework towards
attacking graph embedding models,” 2019.

[64] N. Entezari, S. A. Al-Sayouri, A. Darvishzadeh, and E. E. Papalexakis,
“All you need is low (rank) defending against adversarial attacks on
graphs,” in Proceedings of the 13th International Conference on Web
Search and Data Mining, 2020, pp. 169–177.

[65] B. Fatemi, L. E. Asri, and S. M. Kazemi, “Slaps: Self-supervision
improves structure learning for graph neural networks,” arXiv preprint
arXiv:2102.05034, 2021.

[66] Y. Wang, S. Mukherjee, H. Chu, Y. Tu, M. Wu, J. Gao, and A. H.
Awadallah, “Adaptive self-training for few-shot neural sequence label-
ing,” arXiv preprint arXiv:2010.03680, 2020.

[67] Y. Rong, W. Huang, T. Xu, and J. Huang, “Dropedge: Towards deep
graph convolutional networks on node classification,” arXiv preprint
arXiv:1907.10903, 2019.

[68] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun, “Measuring and
relieving the over-smoothing problem for graph neural networks from the
topological view,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 04, 2020, pp. 3438–3445.

[69] M. Liu, H. Gao, and S. Ji, “Towards deeper graph neural networks,”
in Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2020, pp. 338–348.

[70] D. Luo, W. Cheng, W. Yu, B. Zong, J. Ni, H. Chen, and X. Zhang,
“Learning to drop: Robust graph neural network via topological denois-
ing,” in Proceedings of the 14th ACM International Conference on Web
Search and Data Mining, 2021, pp. 779–787.

[71] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” arXiv preprint arXiv:1611.01144, 2016.

[72] Z. Wang, S. Di, and L. Chen, “Autogel: An automated graph neural
network with explicit link information,” Advances in Neural Information
Processing Systems, vol. 34, 2021.

[73] Z. Huan, Y. Quanming, and T. Weiwei, “Search to aggregate neigh-
borhood for graph neural network,” in 2021 IEEE 37th International
Conference on Data Engineering (ICDE). IEEE, 2021, pp. 552–563.

[74] L. Wei, H. Zhao, Q. Yao, and Z. He, “Pooling architecture search for
graph classification,” in Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, 2021, pp. 2091–
2100.

[75] X. Wang, Z. Zhang, and W. Zhu, “Automated graph machine learning:
Approaches, libraries and directions,” arXiv preprint arXiv:2201.01288,
2022.

1030

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 30,2023 at 14:24:37 UTC from IEEE Xplore. Restrictions apply.

