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Abstract—The scoring function, which measures the plausibil-
ity of triplets in knowledge graphs (KGs), is the key to ensure
the excellent performance of KG embedding, and its design is
also an important problem in the literature. Automated machine
learning (AutoML) techniques have recently been introduced into
KG to design task-aware scoring functions, which achieve the
state-of-the-art performance in KG embedding. However, the
effectiveness of searched scoring functions is still not as good as
desired. In this paper, observing that existing scoring functions
can exhibit distinct performance on different semantic patterns,
we are motivated to explore such semantics by searching relation-
aware scoring functions. But the relation-aware search requires
a much larger search space than the previous one. Hence, we
propose to encode the space as a supernet and propose an
efficient alternative minimization algorithm to search through the
supernet in a one-shot manner. Finally, experimental results on
benchmark datasets demonstrate that the proposed method can
efficiently search relation-aware scoring functions, and achieve
better embedding performance than state-of-the-art methods. 1

Index Terms—Knowledge Graph, Knowledge Graph Embed-
ding, Neural Architecture Search, Automated Machine Learning

I. INTRODUCTION

Knowledge Graph (KG) [1], [2], as one of the most ef-
fective ways to explore and organize knowledge base, ap-
plies to various problems, such as question answering [3],
recommendation [4], and few-shot learning [5]. In KGs,
every edge represents a knowledge triplet in the form of
(head entity, relation, tail entity), or ph, r, tq for simplicity.
Given a triplet, several crucial tasks in KGs, such as link
prediction and triplet classification [1], [2], can be used to
verify whether such a fact exists to form this triplet. KG
embedding has been proposed to address this issue. Basically,
KG embedding targets to embed entities h, t and relations r
into low-dimensional vector space such as h, r, t P Rd. Then
based on the embeddings, a scoring function f is employed to
compute a score fph, r, tq to verify whether a triplet ph, r, tq
is a fact. Triplets with higher scores are more likely to be facts.

In the last decade, various scoring functions have been
proposed to significantly improve the quality of embeddings
[1], [2], [6]. TransE [7], as a representative scoring function,
interprets the relation r as a translation from head entity
h to tail entity t, and optimizes the embeddings to satisfy
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h ` r “ t. However, TransE [7] and its variants [8], [9]
are not fully expressive and their empirical performance is
inferior to the others as mentioned in [10]. Recently, some
works [11]–[13] employ neural networks to design universal
scoring functions. But these scoring functions are not well-
regularized for the KG properties and are expensive to general
predictions [14]. Furthermore, bilinear models (BLMs) [15]–
[19] are proposed to compute the score by the weighted sum
of pairwise interactions of embeddings. Currently, BLMs are
the most powerful in terms of both empirical results and
theoretical guarantees [19] on expressiveness [10], [17].

Generally, the models in BLMs share the form as
fph, r, tq “ hJgprqt, where gprq returns a square matrix
referring to the relation r. DistMult [15] regularizes gprq to
be diagonal, such as gprq “ diagprq, in order to solve the
overfitting problem. ComplEx [16] extends the embeddings to
be complex values. SimplE [17] is another variant that regular-
izes the matrix gprq with a simpler but valid constraint. More
recently, TuckER [20] extends BLMs to tensor models for
KG embedding. However, the designing of scoring functions
is still challenging because of the diversity of KGs [2]. A
scoring function performs well on one task may not adapt
well to the other tasks since different KGs usually own distinct
patterns [14], especially the relation patterns [2].

Recently, automated machine learning (AutoML) [21], [22],
as demonstrated via automated hyperparameter tuning [23]
and neural architecture search (NAS) [24], has shown to
be very useful in the design of machine learning models.
Inspired by such a success, a pioneered work, AutoSF [14],
has proposed to search an appropriate scoring function for
any given KG data using AutoML techniques. AutoSF first
defines the manual scoring functions design problem as a
scoring function search problem and then proposes a search
algorithm. It empirically shows that the searched scoring
functions are KG dependent and outperform the state-of-the-
art ones designed by human experts. In short, AutoSF can
search for proper scoring functions, which depend on the given
KG data and evaluation metric. In other words, AutoSF is task-
aware, while traditional scoring functions are not.

However, the task-aware method AutoSF still follows the
classic way that forcing all relations to share one scoring
function. This is not relation-aware and may cause the ef-
fectiveness issue. Generally, common KG relations can be



TABLE I: The summary of existing scoring functions. The expressiveness measures whether a scoring function can handle
common patterns in KGs: symmetry, anti-symmetry, general asymmetry, inversion. We compare the inference cost on single
triplet of scoring functions w.r.t. the embedding dimension d. Ne and Nr denote the number of entities and relations, respectively.

Scoring functions Effectiveness Efficiency
expressive task-aware relation-aware inference time model complexity

TransE [7] ˆ ˆ ˆ Opdq OpNed`Nrdq
Hand-designed DistMult [15] ˆ ˆ ˆ Opdq OpNed`Nrdq

NTN [11]
‘

ˆ ˆ Opd2q OpNed`Nrd2q
TuckER [20]

‘

ˆ ˆ Opd3q Opd3 `Ned`Nrdq
ComplEx [16]

‘

ˆ ˆ Opdq OpNed`Nrdq
HypER [25]

‘

ˆ ˆ Opd2q OpNed`Nrdq

Searched AutoSF [14]
‘ ‘

ˆ Opdq OpNed`Nrdq
(by AutoML) ERAS

‘ ‘ ‘

Opdq OpNed`Nrdq

roughly categorized into different patterns based on their se-
mantic properties, such as symmetry [15], anti-symmetry [16],
[26], general asymmetry [18], and inversion [17]. Traditional
models design universal scoring functions to cover more
and more relation patterns. For example, DistMult [15] only
handles symmetric relations, while TransE [7] covers another
three kinds of relations except for symmetric relations. Fur-
thermore, ComplEx [16] and SimplE [17] are able to cover
all these four common relation patterns. Intuitively, the more
patterns covered by the scoring function, the stronger ability
it has to learn KGs. However, there are some potential risks
in the pursuit of universal scoring functions. A universal
scoring function may not perform well on certain relation
patterns even though it can handle all kinds of relations [27].
For instance, it has been reported in [28] that HolEX [29]
achieves unsatisfactory performance on symmetric relations
in the FB15K data set [7], despite HolEX being a universal
scoring function. This indicates that forcing all relations to
share one scoring function may not be able to fully express
the interactions between entities with different relations. As
compared in Table I, none of the existing methods cover all
the aspects in terms of the effectiveness.

Unfortunately, it is hard to extend the task-aware method
(i.e., AutoSF [14]) to be relation-aware due to the efficiency
issue. AutoSF adopts a progressive greedy search approach to
find a universal scoring function. It requires separately training
hundreds of scoring functions to convergence, which suffers
from a lot of computational overhead. In general, AutoSF takes
more than one GPU day to search on the smallest benchmark
data set WN18RR, while it requires more than 9 GPU days
on the larger data set YAGO. But the relation-aware search
problem requires a much larger search space than the space
of AutoSF. Therefore, a much more efficient search algorithm
is needed for the relation-aware search.

In this paper, to address the issues mentioned above, we pro-
pose the Efficient search method for Relation-Aware Scoring
functions (ERAS) in KG embedding. We propose to search
multiple scoring functions, which are expressive, task-aware,
and relation-aware, for common relation patterns in any given
KG data. More concretely, we propose a supernet to model the
relation-aware search space and introduce an efficient search
approach to the supernet. We suggest sharing KG embeddings
on the supernet, so as to avoid training hundreds of candidate

scoring functions from scratch as AutoSF does. In summary,
we list the contribution we have made in this work as follows:
‚ Previous works mainly emphasize the expressiveness of

scoring functions, which also motivates AutoSF to design
task-aware scoring functions. However, they ignore that
scoring functions should also be relation-aware as they
model the semantics of relations. In this paper, to address
such a problem, we propose an AutoML-based method to
design relation-aware scoring functions.

‚ We define a novel supernet representation to model the
relation-aware search space, where the relations are assigned
into different groups and each group has a unique scoring
function. The simple but effective supernet not only enables
us to share KG embeddings to significantly accelerate the
search but also protects our search from negative effects.

‚ Inspired by the one-shot architecture search (OAS) algo-
rithms, we propose a stochastic algorithm, i.e., ERAS, that
is efficient and suitable for the automated scoring function
search task. It optimizes the search problem through alter-
native minimization, where embeddings are stochastically
updated in the supernet, groups are assigned by Expectation-
Maximization clustering, and scoring functions are updated
by reinforcement learning.

‚ We conduct extensive experiments on five popular bench-
mark data sets on link prediction and triplet classification
tasks. Experimental results demonstrate that ERAS can
achieve state-of-the-art performance by designing relation-
aware scoring functions. Especially, ERAS can consistently
outperform literature at the relation type level of a given KG
data. Besides, the search is much more efficient compared
with AutoSF and the other popular automated methods.

II. RELATED WORKS

A. Neural Architecture Search (NAS)

1) General Principles: Generally, Neural Architecture
Search (NAS) [21], [22], [24] is formed as a bi-level opti-
mization problem [30] where we need to update the neural
architectures on the upper-level and train the model parame-
ters in the lower-level. Subsequently, three important aspects
should be considered in NAS:
‚ Search space: it defines what network architectures in

principle should be searched, e.g., Convolutional Neural



TABLE II: Notations.
Symbols Meanings
E,R The entity set and relation set.
S The KB triples tph, r, tqu, where h, t P E and r P R.

xh, r, ty The triple-dot product xh, r, ty “
ř

i hi ¨ ri ¨ ti.
ω “ tE,Ru The set of embeddings E PRNeˆd and RPRNrˆd.

f The scoring function, such as fph, r, tq.
M The performance measurement.

M,N The number of relation blocks and relation groups.
O The operation set O ” t0,˘r1, ¨ ¨ ¨ ,˘rM u.
A The weight of architecture.
B The weight of relation assignment.

Networks (CNNs) [31] and Recurrent Neural Networks
(RNNs) [32]. A well-defined search space should be ex-
pressive enough to enable powerful models to be searched.
But it cannot be too large to search.

‚ Search algorithm: it aims to efficiently search in the above
space, e.g., bayesian optimization [33], reinforcement learn-
ing [24], evolution algorithm [34]. A search algorithm is
required to perform an efficient search over the search
space and be able to find architectures that achieve good
performance.

‚ Evaluation mechanism: it determines how to evaluate the
searched architectures in the search strategy. Fast and accu-
rate evaluation of candidate architectures can significantly
boost the search efficiency.

Unfortunately, classic NAS [24], [34] methods are computa-
tionally consuming since candidate architectures are trained by
the stand-alone way, i.e., many architectures are trained from
scratch to convergence and are evaluated separately.

2) One-shot Architecture Search (OAS): More recently,
One-shot Architecture Search (OAS) methods [35]–[37], have
been proposed to significantly reduce the search cost in NAS.
OAS first represents the whole search space by a supernet [35],
which is formed by a directed acyclic graph (DAG), where
the nodes are the operations in neural networks (e.g., 3 ˆ 3
conv in CNNs). Every neural architecture in the space can be
represented by a path in the DAG. Then, instead of training
independent model weights of each candidate architecture like
the stand-alone approach, OAS keeps weights for the supernet
and forces different architectures to share the same weights
if they share the same edges in the DAG (i.e., parameter-
sharing [35], [38]). In this way, architectures can be searched
by training the supernet once (i.e., the one-shot manner), which
makes NAS much faster.

Generally, OAS methods unify the search space with the
form of DAG but differ in their way to search the optimal
subgraph of DAG. Sampling OAS (e.g., ENAS [35]) employs
a controller to sample architectures and search an optimal
subgraph of the whole DAG, which maximizes the expected
reward of the subgraph on the validation set. Instead of
involving controllers, differentiable OAS (e.g., DARTS [36]
and NASP [37]) relaxes the search space to be continuous so
that the architectures can be optimized by gradient descent.
However, differentiable OAS may not able to derive an ar-

chitecture that results in high evaluation performance when
the evaluation metric is not differentiable. In comparison,
sampling OAS is more suitable for the non-differentiable
scenario since it utilizes the policy gradient [39] to optimize
the controller.

B. AutoSF: Searching Task-aware Scoring Functions

Given a KG, it is very empirical to choose a suitable scoring
function from the above manual methods. To better adapt
to different KG tasks, AutoSF [14] leverages the AutoML
techniques to design and customize a proper scoring function
on the given KG.

1) Search Problem: Motivated by the expressiveness guar-
antee and computational efficiency of BLMs, AutoSF proposes
to partition embeddings h, r, t P Rd into M splits (e.g.,
h “ rh1; ¨ ¨ ¨ ;hM s where hi P Rd{M ), and represents scoring
functions as:

fph, r, tq “
ÿM

i“1

ÿM

j“1
xhi,o, tjy, (1)

where o P O with O ” t0,˘r1, ¨ ¨ ¨ ,˘rMu. Note that
xhi,o, tjy computes the triple-dot product and is named as
the multiplicative item. Then previous outstanding scoring
functions [15]–[18], [40] can be unified in f with different
choices of o [14]. This indicates that f is general enough to
represent good scoring functions which are designed manually.
In this way, AutoSF generalizes from human wisdom and
allows the discovery of better scoring functions, which are
not visited in the literature. Subsequently, the search problem
is defined as:

Definition 1 (AutoSF problem [14]): Let f̄ denote the
desired scoring function and Fa denote the set of all possible
scoring functions in AutoSF expressed by (1). Then the scoring
function search problem is defined as follows:

f̄ “ arg maxfPFa Mval pf, ω̄;Svalq

s.t. ω̄ “ arg maxω Mtra pf,ω;Straq ,

where Mtra and Mval measure the performance of scoring
function f and KG embeddings ω on corresponding KG data
S (e.g., training set Stra and validation set Sval), respectively.

Given the embeddings ω̄ learned on the training data Stra,
AutoSF aims to search for a better scoring function f which
leads to higher performance on the validation set Sval. Hence,
AutoSF can find task-aware scoring functions that can achieve
impressive performance on different KG tasks. However, it is
non-trivial to efficiently search a proper scoring function from
the AutoSF’s search space due to its size Opp2M ` 1qM

2

q.
2) Search Algorithm: Since a large number of possible

scoring functions exist in the unified scoring function search
space, AutoSF then proposes a progressive greedy search
algorithm to find a proper scoring function according to an
inductive rule:

f b “ f b´1 ` xhi,o, tjy, (2)

where b is the burget of non-zero multiplicative terms (i.e.,
o ‰ 0) in (1). The intuition behind (2) is to gradually



TABLE III: Hit@1 (in %) results for existing scoring functions on the link prediction task.

SF Type Methods Symmetric relations Anti-symmetric relations
WN18 WN18RR FB15k FB15k237 WN18 WN18RR FB15k FB15k237

Non-universal TransE [7] 0.0 0.0 0.0 5.0 51.0 3.0 55.0 27.0
DistMult [15] 93.0 90.0 73.0 7.0 65.0 9.0 74.0 25.0

Universal

ConvE [12] 93.0 93.0 42.0 1.0 94.0 6.0 61.0 25.0
TuckER [20] 94.0 93.0 67.0 2.0 95.0 12.0 73.0 22.0

ComplEx [16] 94.0 94.0 88.0 2.0 95.0 11.0 80.0 23.0
SimplE [17] 92.0 93.0 74.0 5.0 94.0 5.0 64.0 13.0
Analogy [18] 93.0 92.0 52.0 6.0 93.0 2.0 66.0 27.0
AutoSF [14] 93.2 93.5 85.8 5.7 94.8 11.5 81.1 26.7

add nonzero multiplicative terms xhi,o, tjy to achieve the
final desired f . Each greedy step in the search algorithm
mainly contains two parts: sampling scoring functions and
evaluate the sampled scoring functions. We summarize the
search algorithm in Algorithm 1.

Algorithm 1 AutoSF: Progressive Greedy Search of Task-
aware Scoring Functions

Input: B: number of nonzero blocks.
1: for b in 4, ¨ ¨ ¨ , B do
2: Randomly select N scoring functions tf b´1u;
3: Sample N1 scoring functions tf bu by adding relation

blocks to tf b´1u as f b “ f b´1 ` xhi,o, tjy;
4: Select top-K tf bu based on the Predictor.
5: Train the top-K tf bu to convergence separately and

update Predictor with the evaluated performance.
6: end for
7: return Scoring function fB with highest performance.

However, there are several issues in AutoSF. First, the
evaluation mechanism in AutoSF is inefficient. In every greedy
step, AutoSF trains all candidate scoring functions under
budget b to convergence for performance evaluation, i.e., step
5 of Algorithm 1. Then well-trained embeddings of all scoring
functions will be discarded in the next greedy search. It wastes
a lot of effort to train KG embeddings for performance evalu-
ation. Moreover, within the budget b, the predictor in AutoSF
search algorithm can only leverage the prior experience that is
smaller than the budget b, i.e., step 4 of Algorithm 1, which
may also bring unnecessary KG embeddings training due to
inaccurate prediction. Second, AutoSF pursuits a universal
scoring function over a given KG data. A universal scoring
function that can learn certain relationships does not neces-
sarily mean that this scoring function can perform well on
them [27], [28]. This will be further discussed in Section III-A.

III. PROBLEM DEFINITION

In this section, to further illustrate the motivation of relation-
aware scoring functions, we first discuss the performance
of existing scoring functions at the relation pattern level.
Then, we formulate a relation-aware scoring function search
problem.

A. Motivation of Relation-aware Scoring Functions

As introduced in Section I, traditional scoring functions and
AutoSF try to design universal scoring functions to cover
as many as relation patterns as possible. However, being
expressive does not mean achieving good performance as
relations exhibit different patterns [27], [28]. We summarize
the experimental results reported by Figure 14 and 15 from
[27] in Table III, which demonstrate the performance (the
higher the better) of popular scoring functions on symmetric
and anti-symmetric relations (e.g., Table IV).

TABLE IV: Exemplar relations corresponding to relation pat-
terns in the benchmark data sets (see Section V-A1 for details).

Relation Patterns WN18/WN18RR FB15k/FB15k237
Symmetric similar to, synset of spouse of

Anti-symmetric hypernym, hyponym child of

From Table III, it is worth noting that universal scoring
functions may perform even worse than non-universal scoring
functions at the relation pattern level. First, TransE performs
badly on symmetric relations on all benchmark data sets [7],
[12], [41] since it cannot handle the symmetric relations.
But it achieves better performance on symmetric relations of
FB15k237 [41] than several universal scoring functions, such
as ConvE, TuckER, ComplEx.

Second, DistMult only covers symmetric relations. There-
fore, DistMult achieves good performance on symmetric re-
lations, while it performs unsatisfactorily on anti-symmetric
relations. However, as reported in Table III, there are several
cases that universal scoring functions perform worse than
DistMult on anti-symmetric relations:

1. ConvE, SimplE, and Analogy in WN18RR [12].
2. ConvE, SimplE, and Analogy in FB15K [7].
3. TuckER, ComplEx, SimplE, and AutoSF in FB15k237 [41].

In summary, universal scoring functions may achieve unsat-
isfactory performance on specific relation patterns of certain
KG. Such observation motivates us to design relation-aware
scoring functions.

B. Problem Formulation

Inspired by the observation in Section III-A and the task-
aware method AutoSF, we here propose to search relation-
aware scoring functions for different relation patterns over any
given KG data.



Recall that AutoSF targets to find a scoring function f
that can achieve high Mpf,ω;Sq for given triplets S. But
in relation-aware search, it is also important to assign rela-
tions to appropriate groups to better cover relation patterns.
Let B P t0, 1uNrˆN record the relation assignment, where
Brn “ 1 if the r P R is assigned to n-th group otherwise
Brn “ 0, and fn denote the scoring function for relations
in n-th group. Then, relation-aware search aims to find a set
of scoring functions tfnu and relation assignments B that can
achieve high Mptfnu,B,ω;Sq. Formally, the problem in this
paper is defined as:

Definition 2 (ERAS problem): Let N denote the total number
of relation groups, and Fe denote the set of all possible
relation-aware scoring functions. Then the relation-aware
scoring function search problem is defined as:

tf̄nu
N
n“1 “ arg maxfnPFe

Mval
`

tfnu
N
n“1, B̄, ω̄;Sval

˘

, (3)

s.t.

#

ω̄ “ arg maxω Mtra
`

tfnu
N
n“1, B̄,ω;Stra

˘

B̄ “ arg minB LB pB,ωq
, (4)

where LB is the loss of relation assignments, and Mtra,
Mval measures the performance on the training set Stra and
validation set Sval, respectively.

Generally, the relation-aware scoring function search prob-
lem is based on the bi-level optimization problem in Defini-
tion 2. Compared with the single-level objective, bi-level opti-
mization allows the model to optimize parameters in different
ways, which is more suitable for deriving scoring functions,
embeddings, and relation assignments. This definition looks
similar to AutoSF in Definition 1, but it is quite different in
essence. First, we need to assign relations to proper relation
groups in the lower-level objective (4). Second, there are
multiple targeted scoring functions tfnuNn“1 for handling N
relation groups. Therefore, the search space Fe for ERAS with
size Opp2M ` 1qNM

2

q is much larger than that for AutoSF
with size Opp2M ` 1qM

2

q. The larger search space requires
ERAS to have a more efficient search algorithm.

IV. SEARCH ALGORITHM

Here, we propose a new algorithm to solve the search
problem in Definition 2. We can see that there are three types
of parameters need to be simultaneously optimized in (3), i.e.,
‚ Group Assignments: The relation assignment mechanism

should be flexible enough to update B during the whole
search procedure.

‚ Architectures: We pursue tfnuNn“1 with high performance.
But it is difficult to maximize (3) because performance
evaluation in KG embedding is usually non-differentiable.

‚ Embeddings: Training KG embeddings ω for evaluating
candidate scoring functions consume a lot of computation
overhead in AutoSF. It is essential to tackle this issue since
ERAS has a much larger search space than AutoSF.
Due to these challenges, neither AutoSF nor other ex-

isting NAS algorithms can be applied (see discussions in
Section IV-D1 and IV-D2). Thus, we propose to deal with the

above challenges using alternative minimization. Specifically,
we incorporate three key components in search algorithm:
Expectation-Maximization (EM) clustering for updating B,
policy gradient for searching tfnuNn“1, and embedding sharing
for updating ω. Details are in the sequel.

A. Update Group Assignments by EM Clustering

In this part, we illustrate how to assign relations to proper
groups in the search procedure. Intuitively, relations with
similar semantic meanings should be grouped. Since the KG
embeddings are designed to encode the semantic meanings
[2], [7], we propose to assign relations based on the given KG
embeddings ω, i.e., minimizing LBpB,ωq in Definition 2.
Specifically, given a set of relations R and N groups, let cn
denote the vector representation of the n-th group (i.e., C for
all groups), and Brn define the degree of membership between
the relation r with n-th group. Then, the objective LB for
relation clustering in Definition 2 is defined as:

minB LBpB,ωq“minB,C

ÿ

r

ÿ

n
Brn}r´cn}

2
, (5)

which can be solved by the Expectation-Maximization (EM)
algorithm [42].

B. Updating Architectures by Reinforcement Learning

Our target in (3) is to derive an optimal relation-aware
scoring function tf̄nuNn“1, which maximizes the evaluation
performance on the given KG data. It is natural that we use
Mean Reciprocal Ranking (MRR) on the validation data as
the evaluation measurement Mval. However, MRR is non-
differentiable, which indicates that directly optimizing (3) by
gradient descent (e.g., differentiable OAS [36], [37]) is not
suitable (see discussions in Section V-E1).

1) Reinforcement Learning Formulation: To handle the
non-differentiable MRR, we first formulate the search problem
of tfnu as a multi-step decision problem. Then we adopt
reinforcement learning to solve (3).

Recall that each fn is a summation of multiplication terms
xhi,o, tjy in (1). We can sequentially determine which oper-
ation o P O is selected for the pi, jq-th multiplicative item in
fn. Let v denote the index of all multiplicative items in tfnu
and αv denote the operation selected for the v-th multiplicative
item. Then, as shown in Figure 1 (a), the search process of
tfnu can be viewed as a multi-step decision problem: a list of
tokens tαvu

V
v“1 (V “ NM2) that needs to be predicted. It is

intuitive to adopt reinforcement learning to solve this problem.
Let A P t0, 1uNM

2
ˆp2M`1q, where Avk “ 1 if αv chooses k-

th operation ok in O otherwise Avk “ 0. Then (3) can be
reformulated as:

maxθ J pθq ” EA„πpA;θqrQ pA,B,ω;Svalqs, (6)

where πpA; θq is a policy parameterized by θ for generating
A, and Q pA,B,ω;Svalq measures MRR performance as:

Q pA,B,ω;Svalq “
ÿ

n

ÿ

ph,r,tqPSval
Brn ¨ qpfnph, r, tqq.



2"

−2"

2!

−2!

#

2" −2"2! −2!# ###

2" −2"2! −2!# ##
$" $! $# $$ $% $& $'$(

$" $)

%" 3, 2, 4 = %! 3, 2, 4 =*+, *+,
(! % )!

3" . 4"

Architecture & Operations

(! % )"
(" % )!
(" % )"
(! % )!
(! % )"
(" % )!
(" % )"

2"

−2"

2!

−2!

#

(! % )!

Supernet

(! % )"
(" % )!
(" % )"
(! % )!
(! % )"
(" % )!
(" % )"

Sharing entity embeddings 0

5"," … 5",%

… …

5)," … 5),%

2"

−2"

2!

−2!

#

(! % )!
(! % )"
(" % )!
(" % )"
(! % )!
(! % )"
(" % )!
(" % )"

2" −2"2! −2! #

Multiplicative
items

"

#

KG 
Embeddings

sampled {%+} sampled {%+}

Sharing relation embeddings 1

3" . 4! 3! . 4" 3! . 4! 3" . 4" 3" . 4! 3! . 4" 3! . 4!

(a) Modelling the generation of f as a multi-step decision process.

2"

−2"

2!

−2!

#

2" −2"2! −2!# ###

2" −2"2! −2!# ##
$" $! $# $$ $% $& $'$(

$" $)

%" 3, 2, 4 = %! 3, 2, 4 =*+, *+,
(! % )!

3" . 4"

Architecture & Operations

(! % )"
(" % )!
(" % )"
(! % )!
(! % )"
(" % )!
(" % )"

2"

−2"

2!

−2!

#

(! % )!

Supernet

(! % )"
(" % )!
(" % )"
(! % )!
(! % )"
(" % )!
(" % )"

Sharing entity embeddings 0

5"," … 5",%

… …

5)," … 5),%

2"

−2"

2!

−2!

#

(! % )!
(! % )"
(" % )!
(" % )"
(! % )!
(! % )"
(" % )!
(" % )"

2" −2"2! −2! #

Multiplicative
items

"

#

KG 
Embeddings

sampled {%+} sampled {%+}

Sharing relation embeddings 1

3" . 4! 3! . 4" 3! . 4! 3" . 4" 3" . 4! 3! . 4" 3! . 4!

(b) Architecture of supernet.
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(c) Illustration to embedding sharing.

Fig. 1: Set M,N “ 2 in all examples. (a) An example of recurrently generating the relation-aware scoring functions tf1, f2u:
f1ph, r, tq “ xh1, r1, t1y ` xh2, r2, t2y and f2ph, r, tq “ ´ xh1, r1, t2y ´ xh2, r2, t1y; (b) The illustration to supernet in the
form of bipartite graph and architecture weight A; (c) The example of sharing embeddings between two sampled relation-aware
scoring functions.

Note that qp¨q measures MRR of a triplet and fn is the n-th
scoring function based on A. Then, the gradient of θ in (6)
can be computed by REINFORCE gradient [39] as

∇θJ pθq “ EA„πpA;θq

”

ÿV

v“1
∇θ logP pαv|αpv´1q:1; θqQ

ı

«
1

U

ÿU

u“1

ÿV

v“1
∇θ logP pαv|αpv´1q:1; θqpQu´bq, (7)

where Qu denotes Q pAu,B,ω;Svalq, Au is u-th sampled
architecture from πpA; θq, b is a moving average baseline to
reduce variance, and U denote the number of sampled scoring
functions. We can see that solving (6) has been converted to
optimize θ in (7), and whether Q is differentiable does not
affect the gradient computation w.r.t θ.

Inspired by [24], [35], we also adopt a Long Short-term
Memory (LSTM) [43] to parameterize θ for learning the policy
πpA; θq. Specifically, the controller samples decisions in an
autogressive way: the decided operation αv in the previous
multiplicative item is carried out and then fed into the next to
predict αv`1 (see Figure 1 (a)). Finally, (7) is used to update
the LSTM policy network θ.

2) Encoding Prior of Architectures: To fully evaluate the
search space, we expect that every relation segmentation
ri P Oz0 must be selected at least once in the searched
scoring functions, named as the exploitative constraint. Thus,
we constrain A with this exploitative constraint. If the sampled
A does not satisfy it, we will directly set the reward Q to 0.

C. Update Embedding in Shared Supernet

AutoSF follows the classic NAS way to evaluate the stand-
alone performance of candidate scoring functions, which re-
quires separately training KG embeddings hundreds of times.
As discussed in Section II-A2, OAS methods propose a
more efficient evaluation mechanism by forcing all candidates
sharing parameters. Inspired by OAS works, we design a
simple but effective supernet that enables candidate scoring
functions sharing the KG embeddings for accelerating search.

1) Design of Supernet: To enable fast evaluation, we pro-
pose a supernet view of the relation-aware scoring function
search space. Specifically, the fn is represented as:

fnph, r, tq “
ÿ

i

ÿ

j

ÿ

k
Avk ¨ xhi,ok, tjy. (8)

Recall that v is the index of multiplicative items in tfnu and k
is the index of operations in O. Then, as shown in Figure 1 (b),
we can take A as the adjacency matrix of a bipartite graph
(i.e., supernet) from above (8), where multiplicative items
and operations are nodes, and Avk records the edge weight
between multiplicative items and operations. Based on the
supernet design, Figure 1 (c) illustrates that any relation-aware
tfnu can be realized by taking subgraphs of the supernet.
Then ERAS forces all subgraphs to share embeddings, thereby
different scoring functions can be evaluated based on the same
KG embedding. It enables us to evaluate candidate scoring
functions faster by avoiding repetitive embedding training.

2) Update Embeddings: Given the fixed controller’s policy
πpA; θq and relation assignment B, we propose to solve
Mtra in objective (4) by minimizing the expected loss L
on the training data, such as EA„πpA;θqrL pA,B,ω;Straqs.
Then stochastic gradient descent (SGD) can be performed to
optimize ω. We approximate the gradient ∇ω according to:

∇ωEA„πpA;θqrLs «
1

U

ÿU

u“1
∇ωL pAu,B,ω;Straq , (9)

where U is the number sampled scoring functions, and

L pAu,B,ω;Straq “
ÿ

n

ÿ

ph,r,tqPStra
Brn ¨ `pfnph, r, tqq.

Note that `p¨q is the multiclass log-loss [19] and fn is the n-
th scoring function based on sampled Au. Hence, (9) can be
represented as:

∇ωEA„πpA;θqrLs«
1

U

ÿU

u“1

ÿ

n

ÿ

ph,r,tqPStra

∇ωBrn ¨`pfnph, r, tqq.

3) Performance Evaluation: Recall that Qu denotes the
reward of the u-th sampled scoring function in (7). In the
supernet, every sampled scoring function can be regarded as
a subgraph of the supernet where some edges are activated.
Hence, we can evaluate Qu based on the sampled scoring
functions by activating the subgraph on the supernet.



TABLE V: Comparison of AutoSF (Algorithm 1) and ERAS (Algorithm 2) in terms of NAS principles (Section II-A1).
space algorithm evaluation

size property
AutoSF Opp2M ` 1qM

2
q task-aware progressive greedy search by stand-alone

ERAS Opp2M ` 1qNM2
q task-/relation-aware alternative minimization (EM cluster

+ reinforcement learning) in embedding shared supernet

D. Complete Algorithm
The proposed algorithm ERAS is summarized in Algo-

rithm 2, where KG embedding ω, relation assignments B and
architectures A are alternatively updated in every epoch. To
improve the efficiency of scoring function search, we represent
the search space as a supernet and propose to share KG
embeddings across different scoring functions in step 3 (see
Section IV-C). Thus, ERAS is capable of avoiding wasting a
lot of computation on training embeddings from scratch. To
enable relation-aware scoring function search, we introduce
EM clustering in step 4 to dynamically assign relations B
based on the learned embeddings (see Section IV-A). To han-
dle the non-differentiable measurement of scoring functions,
we use reinforcement learning and perform policy gradient in
step 5-6 (see Section IV-B). After searching, we derive several
sampled scoring functions with the well-trained controller and
compute its reward on a mini-batch of the validation data
in step 9-11. Finally, we take the scoring functions with the
highest reward and re-train it from scratch.

Algorithm 2 ERAS: Efficient Relation-aware Scoring Func-
tions Search.
Input: Initialize embeddings ω, relation groups B, and con-

troller’s parameter θ.
// search relation- and task-aware scoring functions

1: while not converge do
2: Sample a set of scoring functions from πpA; θq;
3: Update shared embeddings ω with (9);
4: Update relation assignments B according to (5);
5: Sample a mini-batch data Bval from validation data Sval;
6: Update architectures policy πpA; θq with (7);
7: end while

// Derive the final scoring function Ā
8: ERAS samples K scoring functions AK from πpA; θq;
9: for A P AK do

10: Compute Q pA,B,ω;Svalq;
11: end for
12: return The scoring function Ā with highest reward on

validation set, and train it from scratch to convergence.

1) Comparison with AutoSF: To compare ERAS with the
pioneering work AutoSF, we summarize them from the per-
spective of NAS principles in Table V. First, to capture the
inherent properties of relation patterns in KGs, ERAS targets
to solve the relation-aware scoring function search problem
in this paper. This leads to the larger search space in ERAS
than that in AutoSF. Second, ERAS proposes an alternative
minimization way to solve the non-differentiable problem of
Mval. Finally, AutoSF evaluates every scoring function based

on their stand-alone performance, which requires repeatedly
training KG embeddings hundreds of times. On the contrary,
ERAS shares KG embeddings across different scoring func-
tions, which extremely reduces time expense for performance
evaluation of candidate scoring functions.

2) Comparison with Existing OAS Algorithms: Inspired by
parameter sharing in OAS works, we propose to share KG
embedding in the supernet, thereby ERAS avoids repeatedly
training KG embedding hundreds of times. However, there
exist some concerns about parameter-sharing in OAS [38],
[44]. Specifically, while parameter sharing enables an alter-
native way to train all architectures in the search space in
a cheaper way, it can lead to a biased evaluation problem:
the evaluation of candidate architectures in the search phase
(i.e., Mval) is inconsistent with the stand-alone training phase.
Especially, the correlation between one-shot and stand-alone
performance will probably be unstable as the supernet goes
deep and complex.

Therefore, to make parameter sharing work for our problem,
we first construct a search space, which can be represented
by a supernet in (8). Then, to avoid the supernet being deep
and complex, we design a shallow and simple supernet with
the form of a bipartite graph, which differs from the complex
DAG supernet in classic OAS works. We demonstrate that
the ERAS’s supernet design does not suffer from a biased
evaluation problem in Section V-E1. In summary, we leverage
the domain-knowledge of KG embedding to make embedding
sharing works.

V. EMPIRICAL STUDY

Here we mainly show that ERAS can improve effectiveness
in KG embedding with high efficiency, and provide some
insight views. All codes are implemented with PyTorch [47]
and experiments are run on a single TITAN Xp GPU.

A. Experiment Setup

1) Data Sets: In our experiments, we mainly conduct
experiments on five public benchmarks data sets: WN18 [7],
WN18RR [12], FB15k [7], FB15k237 [41], and YAGO3-
10 [12], that have been employed to compare KG embedding
models in [7], [15]–[18]. Note that WN18RR and FB15k237
remove duplicate and inverse duplicate relations from WN18
and FB15k, respectively. The statistics of five data sets are
summarized in Table VII.

2) Hyperparameter Settings: The hyperparameters in this
work can be mainly categorized into searching and evaluation
parameters. To fairly compare existing scoring functions, in-
cluding human-designed and searched ones, we search a stand-
alone parameter set on the SimplE with the help of HyperOpt,



TABLE VI: Comparison of the best scoring functions identified by ERAS and the state-of-the-arts on the link prediction task.
The bold numbers mean the best performance and the underline ones mean the second best. r♣s: results are taken from [14];
r:s: from [45]; r;s: from [11]; §: from [25]; r♦s: from [12]; r˚s: from [20]; r`s: from [29]; r♠s: from [46].

type model WN18 WN18RR FB15k FB15k237 YAGO3-10
MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

TransE♣ 0.500 - 94.1 0.178 - 45.1 0.495 - 77.4 0.256 - 41.9 - - -
TDMs TransH♣ 0.521 - 94.5 0.186 45.1 0.452 - 76.6 0.233 - 40.1 - - -

RotatE: 0.949 94.4 95.9 0.476 42.8 57.1 0.797 74.6 88.4 0.338 24.1 53.3 - - -
NTN; 0.53 - 66.1 - - - 0.25 - 41.4 - - - - -

NNMs ConvE♦ 0.942 93.5 95.5 0.460 39.0 48.0 0.745 67.0 87.3 0.316 23.9 49.1 0.520 45.0 66.0
HypER§ 0.951 94.7 95.8 0.465 43.6 52.2 0.790 73.4 88.5 0.341 25.2 52.0 0.533 45.5 67.8

TBMs

TuckER ˚ 0.953 94.9 95.8 0.470 44.3 52.6 0.795 74.1 89.2 0.358 26.6 54.4 - - -
HolEX` 0.938 93.0 94.9 - - - 0.800 75.0 88.6 - - - - - -
QuatE♠ 0.950 94.5 95.9 0.488 43.8 58.2 0.782 71.1 90.0 0.348 24.8 55.0 - - -

DistMult♣ 0.821 71.7 95.2 0.443 40.4 50.7 0.817 77.7 89.5 0.349 25.7 53.7 0.552 47.6 69.4
ComplEx♣ 0.951 94.5 95.7 0.471 43.0 55.1 0.831 79.6 90.5 0.347 25.4 54.1 0.566 49.1 70.9
Analogy♣ 0.950 94.6 95.7 0.472 43.3 55.8 0.829 79.3 90.5 0.348 25.6 54.7 0.565 49.0 71.3
SimplE♣ 0.950 94.5 95.9 0.468 42.9 55.2 0.830 79.8 90.3 0.350 26.0 54.4 0.565 49.1 71.0

Rule-based AnyBURL 0.950 94.6 95.9 0.480 44.6 55.5 0.830 80.8 87.6 0.310 23.3 48.6 0.540 47.7 67.3

AutoML AutoSF♣ 0.952 94.7 96.1 0.490 45.1 56.7 0.853 82.1 91.0 0.360 26.7 55.2 0.571 50.1 71.5
ERASN“1 0.951 94.7 96.0 0.490 45.0 56.8 0.853 82.0 91.2 0.361 26.6 55.2 0.570 50.2 71.5

ERAS 0.953 95.0 96.2 0.492 45.2 56.8 0.855 82.3 91.4 0.365 26.8 55.5 0.577 50.3 71.7

TABLE VII: Summary of KG benchmark data sets.
Data set #relation #entity #training #validation #testing
WN18 18 40,943 141,442 5,000 5,000

WN18RR 11 40,943 86,835 3,034 3,134
FB15k 1,345 14,951 484,142 50,000 59,071

FB15k237 237 14,541 272,115 17,535 20,466
YAGO3-10 37 123,188 1,079,040 5,000 5,000

a hyperparameter optimization framework [33]. The tuned
parameter set includes: learning rate, L2 penalty, decay rate,
batch size, embedding dimensions. Then we compare the
stand-alone performance of different scoring functions on the
tuned parameter set. Besides, the searching parameters of
ERAS are the number of segments M , relation groups N ,
sampled scoring functions U in (7) and (9). Moreover, we
optimize embeddings ω with Adagrad [48] algorithm and the
controller θ with Adam [49] algorithm.

B. Comparison with KG Embedding Methods

As in [14], [20], [46], we perform experiments with link
prediction and triplet classification task, as they are important
testing bed for scoring functions.

1) Link Prediction: We first test the performance of our
proposed method on the link prediction task. This is the
test bed to measure KG embedding models and works as an
important task in KG completion. Given the triplet ph, r, tq P
Sval Y Stest, the KG embedding model obtains the rank of h
through computing the score of ph1, r, tq for all entities, and
the same for t. We adopt the classic metrics [7], [8]:
‚ Mean Reciprocal Ranking (MRR): 1{|S|

ř|S|
i“1

1{ranki, where
ranki is the ranking result; and

‚ Hit@1, i.e., 1{|S|
ř|S|
i“1 Ipranki ď 1q, and Hit@10, i.e.,

1{|S|
ř|S|
i“1 Iprankiď10q, where Ip¨q is the indicator function.

Note that the higher MRR, Hit@1 and Hit@10 values
mean better embedding quality. We compare the proposed

TABLE VIII: Hit@1 results for ERASN“1 and ERAS on the
link prediction task at the relation pattern level.

Methods Symmetric relations Anti-symmetric relations
WN18RR FB15k FB15k237 WN18RR FB15k FB15k237

Best in Table III 94.0 88.0 7.0 12.0 81.0 27.0
ERASN“1 93.2 86.5 5.3 11.6 80.4 26.9
ERAS 94.3 90.0 8.8 13.2 82.1 27.9

ERAS (Algorithm 2) with the popular KG embedding models
mentioned in Section I:
‚ Translational models (TDMs): TransE [7], TransH [8], and

RotatE [45];
‚ Neural network models (NNMs): NTN [11], ConvE [12],

and HypER [25];
‚ Tensor-based models (TBMs): TuckER [20], HolEX [29],

QuatE [46], DistMult [15], ComplEx [16], Analogy [18]
and SimplE [17];

‚ The rule-based model: AnyBURL [50];
‚ The scoring function search method: AutoSF [14].

The comparison of the global effectiveness between ERAS
and other methods is in Table VI. Firstly, it is clear that tra-
ditional scoring functions, such as TDMs, NNMs, and TBMs,
are not task-aware since no scoring functions can perform
consistently over the benchmark data sets. This indicates that a
single scoring function is hard to adapt to different KGs even
though it is a universal scoring function like, as discussed
in Table III. The task-aware method AutoSF can search the
KG-dependent scoring functions on five data sets and perform
consistently better than traditional scoring functions. Then, we
compare AutoSF with a variant of ERAS, i.e., ERASN“1, that
aims to search a universal scoring function since all relations
are assigned into one group (i.e., only task-aware as AutoSF).
For five benchmark data set, ERASN“1 shows almost the
same performance with AutoSF. Moreover, as a task-aware and
relation-aware method, ERAS performs better than AutoSF



(a) WN18RR. (b) FB15K237. (c) YAGO3-10.

Fig. 2: Search efficiency comparison of ERAS with the other popular search algorithms in AutoML.

TABLE IX: Running time analysis of the automated approaches on single GPU in hours.

Methods AutoSF ERASN“1 ERAS Handed-designed
greedy search evaluation supernet training evaluation supernet training evaluation DistMult QuatE

WN18 65.7˘3.0 5.5˘0.5 3.29˘0.2 2.1˘0.1 3.54˘0.1 2.2˘0.1 1.9˘0.1 2.0˘0.1
FB15K 127.1˘5.2 20.5˘ 1.3 4.55˘0.2 19.0˘0.2 4.86˘0.2 19.49˘0.3 8.36˘0.2 11.1˘0.4

WN18RR 38.6˘1.9 3.72˘0.6 2.97˘0.2 0.50˘0.1 3.19˘0.1 0.52˘0.1 0.42˘0.1 0.95˘0.1
FB15k237 61.1˘2.8 8.5˘0.4 3.22˘0.1 4.7˘0.1 3.54˘0.1 4.8˘0.2 2.6˘0.1 5.0˘0.3

YAGO 219.9˘5.1 18.9˘2.0 17.5˘0.3 29.5˘1.1 19.8˘0.3 30.3˘1.9 26.4˘1.5 32.6˘2.0

and other manually designed scoring functions.
As discussed in Section III-A, the existing scoring functions

may achieve unsatisfactory performance on specific relation
types of certain KG data. Corresponding to Table III, we
investigate the performance of ERASN“1 and ERAS at the
relation type level in Table VIII. Obviously, the relation-aware
method ERAS can consistently achieve outstanding perfor-
mance on various relation types of any KG data. Especially,
ERAS improves the performance of symmetric relations in
FB15k and FB15k237. However, since the fact of symmetric
relation only accounts for 3% of the test data in FB15k and
FB15k237 [27], the global improvement is not so notable.

2) Triplet Classification: To further demonstrate the effec-
tiveness of ERAS, we also conduct the triplet classification
experiments on FB15k, WN18RR, and FB15k237, where the
positive and negative triplets are provided. We compare our
methods with those that have reported results in public papers.
This task aims to answer whether a given ph, r, tq exists or not.
In this task, we utilize the accuracy to evaluate the scoring
functions. We set the same decision rule of classification in
literature [14]: predicting a ph, r, tq is positive if fph, r, tq ą θr
otherwise negative, where θr is a relation-specific threshold
and is inferred by maximizing the accuracy on Sval. As
shown in Table X, the scoring function searched by relation-
aware ERAS consistently outperforms other BLMs or searched
scoring functions.

TABLE X: Comparison of the best scoring functions identified
by ERAS and the state-of-the-art scoring functions for triplet
classification. [♣]: results are taken from [14].

Data set FB15k WN18RR FB15k237
DistMult♣ 80.8 84.6 79.8
Analogy♣ 82.1 86.1 79.7
ComplEx♣ 81.8 86.6 79.6
SimplE♣ 81.5 85.7 79.6
AutoSF♣ 82.7 87.7 81.2

ERAS 82.9 88.0 81.4

C. Comparison with AutoML Search Methods

ERAS enables embedding sharing to improve the scor-
ing function search efficiency. Hence we also compare the
scoring function search efficiency of ERAS and ERASN“1

with other automated search algorithms, i.e. AutoSF [14],
random search [44], and Bayes algorithm [33], over three
benchmark datasets. As shown in the Figure 2, both ERAS and
ERASN“1 complete the search very quickly. That is because
other AutoML methods have to train hundreds of candidate
scoring functions to convergence, while ERAS and ERASN“1

avoids the time-consuming training by one-shot way. Com-
pared with ERAS, ERASN“1 convergess faster in search
procedure since it does not dynamically assign relations and
search corresponding scoring functions for different groups.
It is worth noting that ERAS has unstable performance at
beginning of the search. That is because FB15k237 has much
more relations than another 2 data sets. It takes some time
to find proper relation assignments at the start. Furthermore,
other automated methods can achieve higher performance than
ERAS in the search strategy. ERAS consistently updates the
candidate scoring functions in every mini-batch data, which
results in that the searched scoring functions cannot be well
trained with one or several mini-batches. But other automated
methods train the searched scoring functions with all training
data until convergence.

We also summarize the running time on the five data sets
in Table IX. AutoSF sets the embedding dimension d to 64
for all data sets, while ERAS enables much faster search and
hence sets d “ 512. The larger dimensionality enables us to
evaluate the scoring function more accurately. As shown in
Table IX, the search time of AutoSF is significantly reduced
by ERASN“1. But recall that the effectiveness of ERASN“1

is the same with AutoSF in Table VI. This indicates that
ERASN“1 can extremely shorten the task-aware search time
but maintain the same effectiveness with AutoSF. Moreover,
although ERAS searches from a larger search space that is



Fig. 3: The example of searched relation-aware scoring functions by ERAS on WN18.

Fig. 4: The example of searched relation-aware scoring functions by ERAS on WN18RR.

relation-aware, it reduces the search time of AutoSF by one
order with a large dimension size d “ 512 and improves
effectiveness as in Table VI. In summary, ERAS can more
efficiently search for more effective scoring functions.

D. Case Study: The Searched scoring functions

To show the searched scoring functions by ERAS are
relation-aware, we use searched scoring functions from WN18
and WN18RR as examples and plot them in Figure 3 and
4. As we can see, the three searched scoring functions have
distinct patterns and are relation-aware. Moreover, the relations
are grouped into general asymmetry, symmetry, and anti-
symmetry. And the three SFs searched have distinct patterns
and can handle their corresponding relations.

E. Ablation Study

To investigate the influence of different components of
ERAS, we conduct several ablation studies.

1) Impact of Evaluation Measurement and Optimization
Algorithm: As discussed in Section IV-D2, the deep and
complex supernet design will probably lead to the biased
evaluation problem. In Figure 5(a), we first demonstrate the
correlation between stand-alone validation MRR with one-
shot validation MRR (i.e., Mval) of various scoring functions
in ERAS. It is obvious that one-shot validation MRR has
near positive correlation with the stand-alone validation MRR.
Therefore, the simplified design of supernet makes embedding
sharing work, and there is no biased evaluation problem.

To further investigate the impact of Mval and optimization
algorithms, we compare ERAS with following variants:
‚ ERASlos utilizes the validation loss L to replace Mval. Other

steps are same with ERAS.

(a) Validation MRR as Mval. (b) Validation loss as Mval.

Fig. 5: The correlation between stand-alone validation MRR
with different Mval settings of various searched scoring func-
tions on WN18RR.

‚ ERASdif first replaces Mval with L as ERASlos does. Then
the differentiable measurement L enables the differentiable
optimization algorithm [36], [37] for search. The detailed
implementing ERASdif is presented in Appendix.

We show the correlation between stand-alone validation
MRR with different Mval settings in Figure 5. Obviously,
compared with using MRR as Mval in Figure 5 (a), Figure 5
(b) shows that using L as Mval has a low correlation with
stand-alone validation MRR. This indicates that validation
loss in search strategy cannot well evaluate the stand-alone
performance of scoring functions. Subsequently, in Table XI,
we can observe that the performance of ERAS using MRR
as Mval is better than that of two variants, i.e., ERASlos and
ERASdif. Moreover, ERASlos is worse than ERASdif because
optimizing loss with the RL approach could not make use of
the differentiable nature of L.



(a) WN18RR. (b) FB15k237.

Fig. 6: Comparison on time (sec) of model training vs. testing
MRR with different number of groups N in ERAS.

TABLE XI: Comparison of the variants of ERAS on the link
prediction task.

Section Variant WN18 WN18RR FB15K FB15k237 YAGO3-10
MRR MRR MRR MRR MRR

V-E1 ERASlos 0.944 0.485 0.840 0.344 0.560
ERASdif 0.949 0.485 0.848 0.355 0.565

V-E2 ERASsig 0.945 0.480 0.844 0.338 0.559

V-E3 ERASpde 0.950 0.489 0.850 0.349 0.570
ERASsmt 0.948 0.485 0.845 0.347 0.565

ERAS 0.953 0.492 0.855 0.365 0.577

2) Impact of Optimization Level: In this paper, Definition 2
formulates the problem with a bi-level optimization objective.
As stated in Section III-B, bi-level optimization can benefit
ERAS by updating the scoring functions and embeddings
separately. To investigate the impact of optimization level,
we add another variant of ERAS as ERASsig, which utilizes
the training set to update (3) in Definition 2 (i.e., single-level
problem). In Table XI, compared with ERASsig, ERAS demon-
strates the bi-level optimization is needed because optimizing
scoring functions on the validation set encourages ERAS to
select scoring functions that generalize well rather than scoring
functions that overfit on the training data.

3) Impact of Grouping Approaches: To explore more about
the influence of different grouping approaches, we set two
variants of ERAS as follows:
‚ ERASpde does not update B during search. Instead, it fixes

groupings based on the embedding trained from SimplE.
‚ ERASsmt groups relations based on their semantic meanings

(i.e., symmetric, anti-symmetric, asymmetric and inverse).
We compare these two variants with ERAS as shown in

Table XI. Generally, the performance of ERASsmt is unsatisfac-
tory due to the bias between human understanding of relation
groups with the proper groups derived from data. In short,
the performance comparison also indicates the importance of
dynamically assigning relation groups in the search strategy,
which encourages relations to be assigned to the appropriate
scoring function.

4) Impact of Grouping Numbers: To investigate the impact
of grouping numbers in ERAS, we summarize the performance
of searched scoring functions by AutoSF and different settings
of ERAS in Figure 6, i.e., ERASN (N P t1, 2, ¨ ¨ ¨ , 5u) on
WN18RR and FB15k237. Generally, the more groups there

(a) WN18RR. (b) FB15k237.

Fig. 7: Comparison on time (sec) of model training vs. testing
MRR with different number of blocks M in ERAS.

are, the longer the running time is. And ERAS achieves the
best performance when N “ 3 or 4. Comparing AutoSF
and ERASN“1, they have a similar learning curve since their
model complexities are the same.

5) Impact of Block Numbers: AutoSF fixes the block num-
ber M to 4 due to the efficiency issue. Once M is changed
(e.g., M “ 3 or M “ 5), all design details in AutoSF must be
re-done. On the contrary, the efficiency of ERAS allows more
flexible settings of M . Here we try M P t3, 4, 5u in order
to learn more about how the block number M influences the
ERAS performance. As shown in Figure 7, we can observe
that M “ 4 does have excellent performance among t3, 4, 5u.

VI. CONCLUSION

In this paper, we propose a new automated machine learning
(AutoML) method for designing scoring functions (scoring
functions) in knowledge graph embedding. First, we design
a relation-aware search space, which is motivated by our
analysis of how existing scoring functions adapt to differ-
ent relations. Then, we represent the new search space as
a supernet in the form of a graph and propose to search
through the supernet by one-shot architecture search methods.
Experimental results on benchmark data sets well demonstrate
not only the efficiency of our approach but also the competitive
effectiveness.

For future works, one interesting direction to connect ERAS
with graph neural network [51]; another direction worth to
try is utilizing path instead of triplet to exploit higher-order
information in KGs [52].
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APPENDIX

DETAILS OF IMPLEMENTING ERASDIF

We propose a supernet view of the scoring function search
space as in (8). This supernet design allows us to employ
differentiable OAS methods when we use the loss L as Mval.
Following NASP [37], ERASdif can update the architecture
weight A by gradient descent as:

AÐ A´ ε
ÿ

n

ÿ

ph,r,tqPSval
∇ABrn ¨ `pfnph, r, tqq.

Then (3) can be optimized by above equation. Other steps of
ERASdif are same with ERAS.


