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Abstract—Recently, graph neural networks (GNNs) have
shown its unprecedented success in many graph-related tasks.
However, GNNs face the label scarcity issue as other neural
networks do. Thus, recent efforts try to pre-train GNNs on a
large-scale unlabeled graph and adapt the knowledge from the
unlabeled graph to the target downstream task. The adaptation
is generally achieved by fine-tuning the pre-trained GNNs with
a limited number of labeled data. However, current GNNs pre-
training works focus more on how to better pre-train a GNN,
but ignore the importance of fine-tuning to better leverage the
transferred knowledge. Only a few works start to investigate a
better fine-tuning strategy for pre-trained GNNs. But their de-
signs either have strong assumptions or overlook the data-aware
issue behind various downstream domains. To further boost pre-
trained GNNs, we propose to search to fine-tune pre-trained
GNNs for graph-level tasks (S2PGNN), which can adaptively
design a suitable fine-tuning framework for the given pre-trained
GNN and downstream data. Unfortunately, it is a non-trivial
task to achieve this goal due to two technical challenges. First
is the hardness of fine-tuning space design since there lack a
systematic and unified exploration in existing literature. Second
is the enormous computational overhead required for discovering
suitable fine-tuning strategies from the discrete space. To tackle
these challenges, S2PGNN first carefully summarizes a search
space of fine-tuning strategies that is suitable for GNNs, which is
expressive enough to enable powerful strategies to be searched.
Then, S2PGNN integrates an efficient search algorithm to solve
the computationally expensive search problem from a discrete
and large space. The empirical studies show that S2PGNN can
be implemented on the top of 10 famous pre-trained GNNs and
consistently improve their performance by 9% to 17%. Our code
is publicly available at https://github.com/zwangeo/icde2024.

Index Terms—graph neural network, fine-tuning, pre-training
graph neural networks

I. INTRODUCTION

As one of the most ubiquitous data structures, graph is a

powerful way to represent diverse and complex real-world

systems, e.g., social networks [1], knowledge graphs [2]–

[4], protein interactions [5], and molecules [6]–[10]. Graph

representation learning [11] maps the original graph into the

low-dimensional vector space to handle various graph sce-

narios. Recently, Graph Neural Networks (GNNs) [12]–[19],

which follow the message-passing schema [20] to learn rep-

resentations via iteratively neighboring message aggregation,

have become the leading approaches towards powerful graph

representation learning. GNNs have demonstrated state-of-the-

art results in a variety of graph tasks. e.g., node classification

†Corresponding Author

[12]–[14], [21], [22], link prediction [17], [21], [23]–[26], and

graph classification [6]–[8], [15], [20]–[22], [27], [28].

Despite the revolutionary success of GNNs on graph data,

they are mainly trained in an end-to-end manner with task-

specific supervision, which generally requires abundant la-

beled data. However, high-quality and task-specific labels can

be scarce, which seriously impedes the application of GNNs

on various graph data [29]. Especially, some scientific fields

require extensive and laborious expert knowledge for adequate

annotation, e.g., medicine, chemistry, and biology. Therefore,

recent efforts [29]–[36] investigate pre-training [37] in GNNs

so as to tackle this challenge and improve the generalization

performances of GNNs. Pre-trained GNNs have demonstrated

superiority and improved generalization performances on the

downstream graph-level tasks, e.g., molecular property predic-

tion [29]. They mainly follow the self-supervised way to pre-

train GNNs on large-scale unlabeled graph data by exploiting

various self-supervised learning (SSL) [38] strategies, such as

Autoregressive Modeling (AM) [32], [39], Masked Component

Modeling (MCM) [29], [40], and Contrastive Learning (CL)

[30], [31], [34], [41]. Then, due to domain discrepancy [42],

the fine-tuning strategy [43], [44] is proposed to transfer

knowledge from pre-trained GNNs to the downstream domain

by training the model with a limited number of labeled data.

Compared with the various pre-training mechanisms, the

fine-tuning strategy on pre-trained GNNs has received little

attention. The most common strategy is still the vanilla fine-

tuning method [45], where the downstream GNN will be

initialized by the parameters of a pre-trained GNN and trained

on the labeled data of the targeted domain. However, the

vanilla strategy may suffer from the issues of overfitting and

poor generalization [46], [47]. Few recent efforts [42], [46],

[48] dedicate to designing novel GNN fine-tuning strategies to

mitigate potential issues of the vanilla solution. Unfortunately,

their designs either have strong assumptions or overlook the

data-aware issue behind the various downstream datasets.

Firstly, the strategy [42] needs the pre-training data and task as

prerequisites for the downstream domain, which unfortunately,

are often inaccessible. Others [46], [48] assume the high

relevance between the pre-trained domain with the downstream

one, then enforce the similarity of model parameters or

learned representations, which are incapable of handling out-

of-distribution predictions. For example, molecular property

prediction [29] often encompass novel substructures that have
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not been encountered during pre-training, a.k.a., scaffold [49].

Secondly, existing methods follow a fixed strategy to design

fine-tuning methods, and their operators and structures remain

unchanged when facing different data (i.e., not data-aware).

However, complex and diverse downstream graph data may

require data-specific strategy to better conduct generalization.

For example, the GNN layers required for different graph data

may be highly data-specific [18], [50] in terms of density and

topology. Thus, how to selectively and comprehensively fuse

the multi-scale information from different layers of pre-trained

GNNs may be a crutial operator towards more data-aware and

effective downstream generalization.

To fully unleash the potential of pre-trained GNNs on vari-

ous downstream datasets, we propose a novel idea to search a

suitable fine-tuning strategy for the given pre-trained GNN and

downstream graph dataset. However, it is a non-trivial task to

achieve this goal due to two technical challenges. Firstly, fine-

tuning pre-trained GNNs is still a under-investigated problem

and there lack a systematic and unified design space in existing

literature. Thus, it is unclear how to design a powerful space

for GNN fine-tuning. Secondly, the entire space equals to

the Cartesian product of the fine-tuning strategy space and

GNN model parameter space. The computational overhead

of discovering suitable fine-tuning strategies from such a

large space is enormous. To address these challenges, we

present a novel framework in this paper, named Search to fine-

tune Pre-trained Graph Neural Networks for graph-level tasks

(S2PGNN). More concretely, we investigate existing literature

within and outside the area of GNNs, and systematically

summarize a search space of fine-tuning frameworks that is

suitable for pre-trained GNNs. The proposed space includes

multiple influential design dimensions and enables powerful

fine-tuning strategies to be searched. To reduce the search cost

from the large and discrete space, we incorporate an efficient

search algorithm, which suggests the parameter-sharing and

continuous relaxation on the discrete space and solves the

search problem by differentiable optimization. In summary,

the main contributions of this work are listed as follows:

• In this paper, we systematically exploring GNN fine-tuning

strategies, an important yet seriously under-investigated

problem, to improve the utilization of pre-trained GNNs.

We investigate fine-tuning within and outside GNN area and

provide a new perspective for GNN fine-tuning.

• To further improve pre-trained GNNs, we propose S2PGNN

that automatically search a suitable fine-tuning strategy for

the given pre-trained GNN and downstream graph dataset,

which broadens the perspective of GNN fine-tuning works.

To the best of our knowledge, we are the first to develop au-

tomated fine-tuning search framework for pre-trained GNNs.

• We propose a novel search space of fine-tuning strategies

in S2PGNN, which identifies key factors that affect GNN

fine-tuning results and presents improved strategies. The

S2PGNN framework is model-agnostic and can be plugged

into existing pre-trained GNNs for better performance.

• The empirical studies demonstrate that S2PGNN can be

TABLE I: A summary of common notations.

Notation Definition
R
d The d-dimension real space.

G = (V,E,A) An attributed graph with node-set V ,
edge-set E, and adjacency matrix A.

V , E
V = {v1, . . . , vn},
E = {(vi, vj)|vi, vj ∈ V }.

Xv ,Xuv ∈ R
d The node and edge attribute vector.

k, K The current and maximum GNN layer
index, 1 ≤ k ≤ K.

Hv ,HG ∈ R
d The node and graph representation vector.

fψ,θ(·) The GNN encoder with architectures ψ
and parameters θ.

pα(·) The GNN fine-tuning controller with pa-
rameters α.

Φft The GNN fine-tuning strategy.
fdim(·) The GNN fine-tuning dimension for

dim ∈ {conv, id, fuse, read}
Odim The candidate-set of fdim(·)
Dssl, Dft The pre-training and downstream dataset.
Lssl(·), Lft(·) The pre-training and downstream loss.

implemented on the top of 10 famous pre-trained GNNs and

consistently improve their performance. Besides, S2PGNN

achieves better performance than existing fine-tuning strate-

gies within and outside the GNN area.

II. RELATED WORK

A graph typically can be represented as G = (V,E,A),
where V = {v1, . . . , vn} is the node-set, E =
{(vi, vj)|vi, vj ∈ V } is the edge-set, and A ∈ {0, 1}|V |×|V | is

the adjacency matrix to define graph topology where Aij = 1
iff (vi, vj) ∈ E. Each node v and edge (u, v) may be further

equipped with attributes Xv ∈ R
d and Xuv ∈ R

d.

In general, the learning on graph data first requires a graph

encoder fψ,θ(·) with architectures ψ and parameters θ to

map the original graph G into the d-dimensional vector space:

fψ,θ : G → {H}, where H ∈ R
d can be the learned repre-

sentation of single node/edge or the entire graph, depending

on the prediction level of downstream tasks. Then, H can be

fed into an additional prediction head (e.g., linear classifier)

to predict the true label. Note that in the paper we discard the

notation of prediction head for brievity. After that, the entire

model can be trained in an end-to-end manner supervised by

task-specific labels via the labeld training dataset D(tra):

θ∗ = argmin
θ

Lsup(fψ,θ(·);D(tra)), (1)

where ψ can be GCN,GIN and other architectures as intro-

duced in Sec. II-A1 and Sec. II-A2. Lsup(·) is the supervised

loss function (e.g., cross entropy). The construction of D(tra)

also depends on the downstream task, e.g., D(tra) = {(G, y)}
for the graph classification.

A. Graph Neural Networks (GNNs)

Recent years have witnessed the unprecedented success of

GNNs for modeling graph data and dealing with various graph

tasks. As one of powerful graph encoders fθ(·), GNNs rely

on graph topology and node/edge features to achieve the rep-

resentation learning. The majority of GNNs [12]–[15] follow
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the message-passing paradigm [20] to learn representation Hv

for given node v by iteratively aggregating messages from its

neighbors N(v). Formally, the intra-layer message passing for

v can be formulated as:

Mv ← AGG({(Hu,Hv,Xuv)|u ∈ N(v)}), (2)

Hv ← COMB(Hv,Mv), (3)

where AGG(·) function aggregates neighboring messages to

produce intermediate embedding Mv , COMB(·) function

combines information from neighbors and center node itself

to update the representation Hv . The aggregation process

iterates for k times such that each node captures up to k-

hop information in its learned representation Hv . Furthermore,

for graph-level tasks, a permutation-invariant readout function

READOUT (·) is further required to obtain graph-level rep-

resentation HG of the entire graph G:

HG = READOUT ({Hv|v ∈ V }). (4)

1) Manual GNNs: The majority of GNNs are specific

instantiations of Eq. (2), (3), and (4) and are designed manu-

ally. They mainly differ in several key functions, e.g., N(v),
AGG(·), COMB(·) and READOUT (·). We next present

several classic GNNs which are adopted in later experiments.

• Graph Convolutional Network (GCN) [12] adopts mean

aggregation function MEAN(·) and non-linear activation

σ(·), e.g., ReLU(·). It proposes to transform intermediate

embedding into representation by trainable matrix W:

Mv←MEAN({Hu|u ∈ N(v) ∪ {v}), Hv←σ(WMv).

• GraphSAGE (SAGE) [13] concatenates the intermediate

embedding with the representation from previous iteration

before the transformation:

Mv←MEAN({Hu|u ∈ N(v)}), Hv←σ(W[Hv||Mv]).

• Graph Isomorphism Network (GIN) [15], as one of the

most expressive GNN architectures, adopts sum aggregation

function SUM(·) and multi-layer perceptron MLP (·) to

transform the combined messages. The scalar ε is to balance

the weights of messages from center node and its neighbors:

Mv←SUM({Hu|u ∈ N(v)}), Hv←MLP ((1+ε)Hv+Mv) .

• Graph Attention Network (GAT) [14] introduces the atten-

tive function ATT (·) [51] as its aggregation function:

Mv ← ATT ({Hu|u ∈ N(v)), Hv ← σ(WMv).

For the graph-level READOUT (·) function, it can be

simple non-parameterized function, e.g., sum pooling and

mean pooling, or other more advanced methods [52]–[54].

2) Automated GNNs: To alleviate the extensive human

labor in effective GNN architecture designs, recent efforts seek

to automate this process and propose AutoGNNs [3], [21],

[22], [55]–[57]. In general, AutoGNNs first design a unified

GNN search space O to cover key design functions in Eq.

(2), (3), and (4) (e.g., AGG(·), COMB(·)) and promising

candidates. They then adopt various search algorithms (e.g.,

Fig. 1: The illustration of overall GNN pre-training and fine-

tuning framework.

differentiable methods [58]) to allow powerful GNNs to be

discovered from the search space:

ψ∗,θ∗ = arg min
ψ∈O,θ

Lsup(fψ,θ(·);Dtra). (5)

Based on Eq. (5), novel GNNs identified by AutoGNNs have

demonstrated superior results than their manually-designed

counterparts on many graph scenarios [21], [55]–[57].

B. Fine-tuning Pre-trained GNNs

To relieve the reliance of GNNs on task-specific labels

and improve their performances on scarcely-labeled graphs,

recent works [29], [30], [32], [36] generalize the idea of self-

supervised learning (SSL) [38] to graph data and propose to

pre-train GNNs on large scale of unlabeled graph data Dssl:

θinit = argmin
θ

Lssl(fψ,θ(·);Dssl), (6)

where Lssl(·) is the loss function based on the adopted SSL

pretext task. Depends on the instantiation of Lssl(·), existing

pre-trained GNNs can be roughly categorized into: AutoEn-

coding [13], [35], Autoregressive Modeling [32], Maksed

Component Modeling [29], [40], Context Prediction [29], and

Contrastive Learning [30], [31], [34], [63]. More technical

details can be found in Sec. IV-B.

Then, to allow the knowledge transfer from large-scale Dssl

to small-scale downstream Dft, they initialize the downstream

GNN model with backbone architectures and pre-trained pa-

rameters (ψ,θinit). Then they perform model fine-tuning with

task-specific labels in Dft via the fine-tuning objective Lft(·):
θ∗ = argmin

θ
Φft[Lft(fψ,θ(·);Dft)], (7)

where the optimization for initialization model fψ,θinit(·)
is guided by the fine-tuning strategy Φft. In the next, we

elaborate on existing methods of fine-tuning techniques Φft

within and outside pre-trained GNNs. We further summarize

the comparisons between the proposed S2PGNN with existing

ones in Tab. II.

• Vanilla Fine-Tuning (VFT): VFT is probably the most

prevalent tuning strategy to adopt pre-trained GNNs among

existing literatures [29], [30], [32], [34]. Under this schema,
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TABLE II: Overview of common fine-tuning strategies in GNN and other domains. Fine-tuning Scenarios present the

application scenario of the fine-tuning strategies, including whether is designed for GNN or other neural networks and which

graph task the strategy can be applied to. Fine-tuning Dimensions presents what aspects they focus on during fine-tuning.

Automated refers to whether they are capable of automatically designing the most suitable strategies to adaptively fine-tune

the model for different downstream data.

Strategy Name
Fine-tuning Scenarios Fine-tuning Dimensions

Automated
GNN/Other Graph Task

Model
Architecture

Identity Fusion Readout
Model

Weights
Vanilla Fine-Tuning (VFT)

√
/
√

Node/Edge/Graph × × × × √ ×

Regularized
Fine-Tuning (RFT)

AUX-TS [42]
√
/× Node/Edge × × × × √ ×

WordReg [46]
√
/× Graph × × × × √ ×

GTOT-Tuning [48]
√
/× Graph × × × × √ ×

L2-SP [59] ×/
√

- × × × × √ ×
DELTA [60] ×/

√
- × × × × √ ×

BSS [61] ×/
√

- × × × × √ ×
StochNorm [62] ×/

√
-

√ × × × √ ×
Feature Extractor (FE) ×/

√
- × × × × × ×

Last-k Tuning (LKT) ×/
√

- × × × × √ ×
Adapter-Tuning (AT) ×/

√
-

√ × × × √ ×
S2PGNN

√
/× Graph

√ √ √ √ √ √

all parameters of the pre-trained GNN together with the new

prediction head are fine-tuned with the task-specific super-

vised loss Lsup(·) (e.g., cross-entropy loss for classification

task) for given downstream scenarios:

Lft(·) ≡ Lsup(·) (8)

• Regularized Fine-Tuning (RFT): To prevent the overfitting

and improve generalization, RFT methods [42], [46], [48]

present improved fine-tuning strategies Φft by regular-

ization. They conduct constrained downstream adaptation

to enforce the similarity of model parameters or learned

representations. This is generally achieved by incorporating

a regularization item Lreg(·) with the original Lsup(·):
Lft(·) = Lsup(·) + Lreg(·), (9)

where different RFT methods differ in the way to instantiate

Lreg(·). Among literatures, AUX-TS [42] augments fine-

tuning objectives with SSL objectives so as to reduce the

gap between two stages and improve results. WordReg [46]

develops smoothness-inducing regularizer built on dropout

[64] to constrain representation distance induced by pre-

trained and fine-tuned models. GTOT-Tuning [48] uses op-

timal transport to align graph topologies of pre-trained and

fine-tuned models while preserving learned representations.

Remark 1 (Prompt Tuning): Prompt Tuning in GNNs [65]–

[67] propose to unify the pre-training and downstream graph

tasks with the shared task template and leverage the prompt

technique [68] to prompt pre-trained knowledge for down-

stream learning. However, their methods may rely on the

high relevance between the pre-training domain with the

downstream one, which however may not hold in practical

scenarios, especially when out-of-distribution predictions are

demanded (e.g., molecular property prediction [29]). Besides,

they mainly investigate how to unify tasks in two stages and

task template designs, which is significantly different with our

fine-tuning search problem (see Definition 1). Therefore, due

to the significantly different research scope with this work,

prompting methods are excluded for comparison in Tab. II.

Remark 2 (Fine-tuning Technique Outside GNNs): Addi-

tionally, we further discuss and test several RFT methods

(including L2-SP [59], DELTA [60], BSS [61], and StochNorm

[62]) that are initially designed to fine-tune other types of

deep models (e.g., CNNs) in the empirical study Sec. IV-C.

Besides, for more comprehensive exploration, we further cover

other classic fine-tuning techniques that are originally designed

outside GNN area, including: Feature Extractor (FE) [69]

that disables the fine-tuning to rely on parameter reuse, Last-

k Tuning (LKT) [70] that freezes initial layers to fine-tune

only last k layers, and Adapter-Tuning (AT) [44] that is

representative of parameter-efficient method which fine-tunes

only a small number of extra parameters in Adapter modules.

III. METHODOLOGY

As introduced in Sec. I, recently developed GNN pre-

training techniques [29]–[36] have demonstrated promising to

tackle the label-scarcity issue and improve the downstream

learning. Despite the emergence of various pre-training strate-

gies, how to fine-tune pre-trained GNNs for downstream sce-

narios, while important, is largely ignored in current literature.

Only a few works start to investigate this direction, but existing

methods either have strong assumptions or overlook the data-

aware issue behind various downstream domains.

To fully unleash the potential of pre-trained GNNs on

various downstream datasets, we aim to design a fine-tuning

searching strategy to automatically design suitable fine-tuning

framework for the given pre-trained GNN and downstream

graph dataset. However, it is a non-trivial task to achieve

this search idea due to the undefined search space and large

computational overhead for optimizing the search problem. In

this section, we first define a new problem of searching fine-

tuning strategies for pre-trained GNNs. We next propose an

expressive search space, which enables powerful models to be
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(a) An example of vanilla fine-tuning strategy.

(b) An example of fine-tuning strategy with regularization.

Fig. 2: Illustration of GNN fine-tuning strategies (refer to Fig. 3 for the legend).

searched. Then, to reduce the search cost from the large and

discrete space, we incorporate an efficient search algorithm

and solve the search problem by differentiable optimization.

A. Problem Formulation

Definition 1 (The Fine-tuning Strategy Search Problem for
Pre-trained GNNs): Given a pre-trained GNN model fψ,θ(·)
with architectures ψ and parameters θ, and downstream graph

dataset with split Dft = (D(tra)
ft ,D(val)

ft ), the automatic and

data-aware GNN fine-tuning search problem in S2PGNN can

be formally defined as a bi-level optimization problem:

Φ∗
ft = arg min

Φft,θ∗
Φft[Lft(fψ,θ∗(·);D(val)

ft )], (10)

s.t. θ∗ = argmin
θ

Lft(fψ,θ(·);D(tra)
ft ), (11)

where Lft(·) is the fine-tuning loss function, and Φft is the

fine-tuning strategy that is to be searched.

By comparing Eq. (5) and (7) with above Eq. (10), it

is intuitive that existing AutoGNNs focus on searching the

GNN architecture ψ and optimizing θ. And existing pre-

trained GNNs present a fixed fine-tuning strategy Φft and

optimize the parameter θ. Both of them cannot be extended

to solve the problem of searching fine-tuning strategies in

Eq. (10). Furthermore, it is hard to solve Eq. (10) due to the

unclear search space of Φft and large computational overhead

of search algorithm. More specifically, fine-tuning pre-trained

GNNs is still an under-investigated problem and there lack

a systematic and unified design space in existing literature.

Besides, it is very time-consuming to enumerate all possible

choices of Φft because we need to train the model parameter

θ to convergence for each Φft.

B. GNN Fine-tuning Search Space

To tackle the challenge of space design for GNN fine-tuning

strategy, we provide a novel GNN fine-tuning search space

from a brand new perspective, i.e., to incorporate the space of

GNN structures with fine-tuning strategies. More specifically,

to ensure the improvement brought by searching fine-tuning

strategies, we identify that the backbone convolution φconv(·),
identity augmentation φid(·), multi-scale fusion φfuse(·), and

graph-level readout φread(·) for model structures are key

functions to affect GNN fine-tuning results. Accordingly, the

improved downstream message-passing with key functions in

S2PGNN can be represented as:{
Zv ← φconv({Hu,Hv,Xuv|u ∈ N(v)}),
Hv ← φid(Hv,Zv), 1 ≤ k ≤ K,

(12)

Hv = φfuse({H(k)
v |1 ≤ k ≤ K}), (13)

HG = φread({Hv|v ∈ V }), (14)

where φconv(·) summarizes the intra-layer message passing

Eq. (2) and (3), φid(·) augments the intra-layer message pass-

ing in pre-trained backbone φconv(·) with identity information

from center node itself, φfuse(·) fuses the multi-scale infor-

mation from different GNN layers k, φread(·) summarizes

node representations to yield the graph representation. Based

on Eq. (12), (13), and (14), the fine-tuning model structure

is shown in Fig. 3, where we use the classic 5-layer GIN

backbone [29] as an example for demonstration. Next, we

elaborate on the illustrations of the proposed dimensions and

their corresponding candidate-sets.

1) Backbone Convolution φconv(·): This dimension is the

most basic building block in pre-trained GNNs. We directly

transfer its structure and parameters to the downstream model.

2) Identity Augmentation φid(·): This dimension is im-

portant for data-aware fine-tuning due to several reasons.

Firstly, in some downstream data, the identity information

from node itself may be more essential than that aggregated

from neighbors via φconv(·), especially when the neighboring

messages can be missing, noisy, or unreliable. Secondly, the

distinguishable information might be easily diluted and over-

smoothed [71] in some backbone choices φconv(·), e.g., GCN.

Thus, φid(·) may be beneficial to adjust the message flow in

φconv(·). We include candidates from:

• No augmentation. We disable the identity augmentation and

keep consistent as in pre-trained backbone with zero aug.
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Fig. 3: Illustration to the framework of S2PGNN built on top of pre-trained 5-layer GIN. The orange part indicates the search

dimensions in S2PGNN. PT., FT., and Id.Aug. are abbreviations for pre-training, fine-tuning, and identity augmentation.

• Additive augmentation. We allow direct skip-connection

[72] with identity aug as Hv ← Hv + Zv . We also

allow transformed augmentation with trans aug as Hv ←
g(Hv) + Zv , where g(·) is a parameterized neural network

with bottleneck architecture that maps R
d → R

m → R
d,

where we enforce m � d for parameter-efficient transfor-

mation similar to Adapter Tuning [44].

3) Multi-scale Fusion φfuse(·): Due to the diversity of

downstream data structure (e.g., density, topology), the most

suitable GNN layers required by different data may be highly

data-specific [18], [50]. Besides, immediate representations in

hidden layers of pre-trained GNNs often capture a spectrum

of graph information with multiple scales, i.e., from local to

global as layer increases [16]. Therefore, to make the fullest

usage of pre-trained information, we propose to fuse the multi-

scale information from different layers Hv =
∑

k w
(k)
v H

(k)
v

so as to allow the more adaptive and effective learning for

downstream data. We cover candidates from:

• Non-parametric fusion. They use simple non-parametric

approaches to determine weights w
(k)
v for fusion. Among

candidates listed in Tab. III, last, concat, max, mean, and

ppr belong to this type. Specifically, last disables the fusion

to directly take the single-scale representations from last

layer, concat concatenates the multi-scale information for

fusion, max takes the maximum value from each channel

to induce the fused representations, mean assigns equal

importance weights for information in each layer, and ppr
assigns decayed weights with Personalized PageRank [73].

• Attentive fusion. They allow the adaptive importance

weights w
(k)
v via attention mechanisms, where w

(k)
v ∈ [0, 1]

and
∑

k w
(k)
v = 1. We adopt the powerful lstm fusion that

is similar as in [16].

• Gated fusion. Gated fusion methods use gating functions to

selectively filter information at different layers. We use gpr
method for this category similar as in [18], which allows

the adaptive scale as well as the sign of information, i.e.,

w
(k)
v ∈ [−1, 1].

4) Graph-level Readout φread(·): This is the compulsory

function for the downstream graph-level predictions. Different

readout methods focus on the capture of information from

different aspects, e.g., node features or graph topology [74].

Thus, downstream data with different structures and properties

may have their data-specific requirements towards the effective

readout. Candidates for this dimension include:

• Simple readout. They are parameter-free and computation-

ally fast, which may be suitable for graph data where the

overall graph topology is less important than individual

node features. We include sum pooling, mean pooling,

and max pooling readouts for this type.

• Adaptive readout. Adaptive methods aim to identify and

capture most informative nodes or substructures into the

graph representation via more sophisticated designs. We

review existing literatures to cover powerful candidates

set2set [75], sort pooling [76], multiset pooling [54],

and neural pooling [77] for this category.

Remark 3 (Space Complexity of Φft): As shown in Fig. 3

and summarized in Tab. III, the overall complexity of the

proposed GNN fine-tuning strategy space Φft in S2PGNN

equals to the Cartesian product of the size of all involved

dimensions, i.e., O(|Oconv|K · |Oid|K · |Ofuse| · |Oread|). For

the illustration in Fig. 3, the search space built on the 5-layer

GIN will have 10,206 candidate fine-tuning strategies. Because

each candidate will require to train the GNN parameter to

convergence, we cannot simply use a brute-force algorithm

to test all possible candidates and train thousands of GNNs,

which can lead to enormous computational overhead.

C. GNN Fine-tuning Search Algorithm

Recall that as introduced in Sec. III-A, the GNN fine-tuning

strategy search problem is formally defined as Eq. (10) and

(11). To solve this problem, we need to compute the gradients

of GNN fine-tuning strategy ∇φLft and GNN model weights

∇θLft. Computing ∇θLft is simple since θ is continuous.

Unfortunately, the GNN fine-tuning strategy φ is categorical

choices (see Tab. III) and thus discrete, thereby ∇φLft does

not exist. Thus, we propose to train a controller pα(φ) that

parameterized by α and hope this controller can sample better

fine-tuning strategy φ after achieving the performance of the

sampled φ. Therefore, we reformulate the problem into:

α∗ = arg min
α,θ∗

Eφ∼pα(φ)[Lft(fφ,θ∗(·);D(val)
ft )], (15)

s.t. θ∗ = argmin
θ

Lft(fφ,θ(·);D(tra)
ft ), (16)
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TABLE III: The GNN fine-tuning design space in S2PGNN: design dimensions and candidate-sets.

Design Dimension Candidate-set
Backbone Convolution φconv(·) Oconv = {pre trained}
Identity Augmentation φid(·) Oid = {zero aug, identity aug, trans aug}
Multi-scale Fusion φfuse(·) Ofuse = {last, concat,max,mean, ppr, lstm, gpr}
Graph-level Readout φread(·) Oread = {sum pooling,mean pooling,max pooling, set2set, sort pooling, neural pooling}

where α is the continuous controller parameter that controls

the selection of GNN fine-tuning strategy φ, φ ∼ pα(φ)
represents a GNN fine-tuning strategy φ being sampled from

the distribution pα(φ) parameterized by α, and E[·] is the

expectation function. We aim to optimize α such that it can

yield the optimal fine-tuning strategy φ∗ ∼ pα∗(φ). In the

following, we demonstrate the concrete algorithm to solve Eq.

(15) and (16) in Sec. III-C1 and Sec. III-C2.
1) Update Fine-tuning Strategy by Re-parameterization:

We propose to employ dimension-specific controllers α =
{αconv,αid,αfuse,αraad} to guide the GNN fine-tuning

strategy search from O = {Oconv,Oid,Ofuse,Oraad} for

respective dimensions (see Sec. III-B and Tab. III), where

αdim ∈ R
|Odim| for ∀dim ∈ {conv, id, fuse, read}. Then,

for the given fine-tuning dimension with candidate-set O (note

that we discard the notation of dimension dim for brevity), let

the one-hot vector φ ∼ pα(φ) ∈ R
|O| represent the sampled

strategy, let Zin be the intermediate representation that to

be fed into this dimension, then its output is calculated as

Zout =
∑|O|

i=1 φ[i] ·O[i](Zin). However, the sampling process

φ ∼ pα(φ) is discrete, which makes the derivative ∇αZout

undefined and the gradient ∇αLft non-existent.
To address this issue for optimizing strategy controller

parameters α in Eq. (15), we leverage the re-parameterization

trick in [78], [79] to relax the discrete strategy sampling to be

continuous and differentiable via φ = gα(U):

gα(U [i])=
exp((logα[i]− log(− log(U [i])))/τ)∑|O|
j=1exp((logα[j]−log(− log(U [i])))/τ)

, (17)

where U [i] ∼ Uniform(0, 1) is sampled from the uniform

distribution, and τ is the temperature that controls the dis-

creteness of softmax output. In this way, the relaxed strategy

gα(U) is differentiable w.r.t. α. Then, the gradient ∇αLft

for solving Eq. (15) can be computed as:

∇αEφ∼pα(φ)[Lft(φ,θ
∗;D(val)

ft )]

= ∇αEU∼p(U)[Lft(gα(U),θ∗;D(val)
ft )]

= EU∼p(U)[∇αLft(gα(U),θ∗;D(val)
ft )]

= EU∼p(U)[L
′
ft(gα(U),θ∗;D(val)

ft )∇αgα(U)], (18)

where ∇αgα(U) can be computed because gα(U) presented

in Eq. (17) is differentiable and Eq. (18) can be easily approx-

imated by Monte-Carlo (MC) sampling [80]. Note that τ → 0
makes the continuous output in Eq. (17) almost indistinguish-

able with the discrete one-hot vector, which thereby ensures

the relaxation in Eq. (17) to be unbiased once converged.
2) Update GNN Weights by Weight-sharing: The gradient

computation for high-level Eq. (15) requires frequent perfor-

mance evaluation of sampled GNN fine-tuning strategy, which

leads to heavy computational cost. To alleviate this issue and

accelerating search, we suggest the weight-sharing [81] in low-

level Eq. (16). Specifically, we evaluate every sampled strategy

φ (Eq. (17)) based on the shared GNN models weights θ,

thereby we avoid repeatedly training the GNN model weights

from scratch. The gradient w.r.t. shared model weights ∇θLft

for solving Eq. (16) can be calculated as:

∇θLft(φ,θ;D(tra)
ft )=

1

|D(tra)
ft |

∑
(x,y)∈D(tra)

ft

∇θ�(φ,θ;(x, y)),

where �(·) is the loss for each labeled data instance (x, y).
Empirically, we leverage the cross-entropy loss for graph

classification task and MSE loss for graph regression task.

IV. EXPERIMENTS

As presented in Sec. II, the GNN pre-training approach

generally contains a GNN backbone model (e.g., GCN [12],

SAGE [13]), a GNN pre-training strategy (e.g., MCM [29],

[40], CL [63]) to transfer knowledge from a large scale

of unlabeled graph data Dssl, a GNN fine-tuning strategy

(e.g., ST [29], RT [48]) to adapt the pre-trained GNNs to

the domain-specific data with labels Dft. In this paper, we

mainly investigate the improvement from the perspective of

automatically designing a suitable fine-tuning strategy for

the given data Dft. Thus, to validate the effectiveness of

the proposed S2PGNN, we need to answer the following

questions:

• Q1: Can S2PGNN be built on top of different GNN back-

bone and pre-training methods and consistently improve

their performance? (see Sec. IV-B and Sec. IV-E)

• Q2: On the same configuration of GNN backbone model

and pre-training strategy, can S2PGNN be more effective

than other GNN fine-tuning strategies? (see Sec. IV-C)

• Q3: As discussed in Sec. II-B, there are several classic fine-

tuning strategies in other domains (see Remark 2) that are

not included in our search space. Will these models perform

well on the GNN area? (see Sec. IV-C)

• Q4: What are the effects of each design dimension in

S2PGNN? (see Sec. IV-D)

• Q5: Is there a risk that the fine-tuning search method will

consume more computing resources to achieve improved

performance? (see Sec. IV-F)

A. Experimental Settings

S2PGNN 1 is implemented based on PyTorch [82] and Py-

Torch Geometric [83] libraries. All experiments are conducted

with one single NVIDIA Tesla V100 GPU.

1Code and data are available at https://github.com/zwangeo/icde2024.
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TABLE IV: Summary of downstream GNN fine-tuning datasets Dft.

Dataset #Molecules #Tasks Task Type Metric Domain
BBBP 2039 1 Classification ROC-AUC (%) (↑) Pharmacology
Tox21 7831 12 Classification ROC-AUC (%) (↑) Pharmacology
ToxCast 8575 617 Classification ROC-AUC (%) (↑) Pharmacology
SIDER 1427 27 Classification ROC-AUC (%) (↑) Pharmacology
ClinTox 1478 2 Classification ROC-AUC (%) (↑) Pharmacology
BACE 1513 1 Classification ROC-AUC (%) (↑) Biophysics
ESOL 1128 1 Regression RMSE (↓) Physical Chemistry
Lipophilicity (Lipo) 4200 1 Regression RMSE (↓) Physical Chemistry

1) GNN backbone models: For GNN backbone architec-

tures, we mainly adopt classic and promising GNNs in re-

cent years, including (5-layer) GCN [12], SAGE [13], Graph

Isomorphism Network (GIN) [15], and GAT [14] (see more

details in Sec. II-A). But due to the limited space, the

experiments in sections Sec. IV-B, Sec. IV-C, Sec. IV-D,

and Sec. IV-F are conducted on GIN. And we report the

performance on other backbone models in Sec. IV-E.

2) GNN pre-training methods and datasets Dssl: To

demonstrate the effectiveness of S2PGNN, we implement

S2PGNN on top of 10 well-known and publicly avail-

able pre-training methods, including Infomax [63], EdgePred

[13], ContextPred [29], AttrMasking [29], GraphCL [30],

GraphLoG [31], MGSSL [32], SimGRACE [34], GraphMAE

[35], and Mole-BERT [40]. As summarized in Tab. V, they

cover a wide spectrum of various SSL strategies Lssl(·) (see

more details in Sec. IV-B). Due to the space limit, the fine-

tuning experiments in Sec. IV-B are conducted on top of all 10

pre-trained models, and experiments in Sec. IV-C, Sec. IV-D,

Sec. IV-F, and Sec. IV-F are built on top of the pioneering

pre-training work ContextPred [29].

In this paper, we follow the literature to adopt ZINC15

(250K) for MGSSL [32], which contains 250K unlabeled

molecules collected from the ZINC15 database [84]. We

use the larger version ZINC15 with 2 million molecules for

methods other than MGSSL [32].

3) GNN fine-tuning tasks and datasets Dft : The proposed

S2PGNN is built on top of existing pre-trained GNNs. Thus,

we follow the vast majority of existing pre-trained GNNs to

focus on the graph-level tasks (including graph classification

and graph regression) for downstream evaluation. Specifically,

we mainly conduct graph-level experiments on downstream

molecular property prediction (MPP), which is an important

task for a variety of domains (e.g., physics, chemistry, and

materials science). In MPP, a molecule is represented as a

graph, where nodes and edges denote atoms and bonds, and

labels are related to molecular toxicity or enzyme binding

properties. The aim of MPP is to predict the properties for

unlabeled molecules. We employ ROC-AUC and RMSE for

evaluating the classific and regressive MPP tasks, respectively.

For datasets with multiple prediction tasks (see Tab. IV), we

report average results over all their tasks.

As shown in Tab. VI, we follow the related literature [29],

[85] to adopt 8 popular benchmark datasets: BBBP [86], Tox21

[87], ToxCast [88], SIDER [89], ClinTox [90], BACE [91],

ESOL [92], and Lipophilicity (Lipo) [93] that are provided

TABLE V: Summary of base GNN pre-training methods.

Method SSL Strategy Lssl(·) SSL Data Dssl

Infomax Contrastive Learning (CL) ZINC15 (2M)
EdgePred Autoencoding (AE) ZINC15 (2M)
ContextPred Context Prediction (CP) ZINC15 (2M)
AttrMasking Masked Component Modeling (MCM) ZINC15 (2M)
GraphCL Contrastive Learning (CL) ZINC15 (2M)
GraphLoG Contrastive Learning (CL) ZINC15 (2M)
MGSSL Autoregressive Modeling (AM) ZINC15 (250K)
SimGRACE Contrastive Learning (CL) ZINC15 (2M)
GraphMAE AutoEncoding (AE) ZINC15 (2M)
Mole-BERT Masked Component Modeling (MCM) ZINC15 (2M)

in MoleculeNet [94]. The selected datasets are from several

domains, including pharmacology, biophysics, and physical

chemistry. Among them, ESOL and Lipo are used for graph

regression, while the rest are for graph classification. As for

data split, we utilize scaffold-split [49] to split molecular

datasets according to their substructures as suggested by [29],

[85]. It provides a more challenging yet more realistic split

to deal with real-world applications (where out-of-distribution

predictions are often required) compared with random-split.

Note that AutoGNNs are excluded for empirical comparisons

because they focus on searching the GNN architecture (as

in Eq. (5)), which thereby cannot be extended to solve the

problem of searching fine-tuning strategies in ours (as in

Definition 1 and Eq. (10)).

4) Implementation details: For GNN pre-training methods,

we employ their officially released pre-trained models to

conduct the next stage fine-tuning. Readers may refer to the

original papers for their detailed pre-training settings.

S2PGNN and other fine-tuning baselines are evaluated with

the same protocol for rigorously fair comparisons. We follow

pioneering literature [29] to setup fine-tuning configurations.

Specifically, we leverage the simple linear classifier as down-

stream prediction head. To fine-tune the whole model, we use

Adam optimizer with a learning rate of 1e-3. We set batch

size as 32 and dropout rate as 50%. We perform fine-tuning

for 100 epochs with early stopping based on validation set. The

ratio to split train/validation/test set is 80%/10%/10%. We run

all experiments for 10 times with different random seeds and

report the mean results (standard deviations).

B. The implementation S2PGNN with Pre-trained GNNs and
comparison with vanilla fine-tuning

As discussed in Sec. II-B, vanilla fine-tuning is still the most

prevalent way to leverage pre-trained GNNs in existing works.

Thus, we first implement and compare the gains of S2PGNN
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TABLE VI: The performance comparison between proposed S2PGNN and vanilla fine-tuning (see Sec. II-B) with different

pre-training objectives (see Sec. IV-B) and fixed GIN backbone. The rightmost column of each task type averages S2PGNN’s

gain/reduction over vanilla fine-tuning across all involved datasets given the specific pre-training objectives.

Classification (ROC-AUC (%)) ↑ Regression (RMSE) ↓ Avg.
GainDataset BBBP Tox21 ToxCast SIDER ClinTox BACE ESOL Lipo

Infomax [63] 68.4 ± 1.7 75.6 ± 0.5 62.5 ± 0.8 58.3 ± 0.7 71.3 ± 2.6 75.5 ± 2.3 2.6 ± 0.1 1.0 ± 0.1
+17.7%

Infomax + S2PGNN 69.9 ± 1.4 76.7 ± 0.5 65.8 ± 0.4 62.3 ± 1.3 74.8 ± 3.8 82.3 ± 1.3 1.5 ± 0.3 0.8 ± 0.0
EdgePred [13] 67.2 ± 2.9 75.8 ± 0.9 63.9 ± 0.4 60.5 ± 0.8 65.7 ± 4.1 79.4 ± 1.4 2.8 ± 0.0 1.0 ± 0.1

+14.4%
EdgePred + S2PGNN 69.1 ± 0.8 77.1 ± 0.8 66.2 ± 0.3 62.3 ± 0.5 71.9 ± 1.1 82.2 ± 1.1 1.7 ± 0.2 0.9 ± 0.0

ContextPred [29] 69.0 ± 0.9 76.0 ± 0.4 63.5 ± 0.4 60.7 ± 0.6 69.7 ± 1.4 80.6 ± 0.8 2.8 ± 0.4 1.1 ± 0.0
+15.1%

ContextPred + S2PGNN 70.9 ± 1.3 76.3 ± 0.4 67.0 ± 0.5 62.8 ± 0.3 75.9 ± 2.2 82.6 ± 0.7 1.7 ± 0.2 0.9 ± 0.0
AttrMasking [29] 65.1 ± 2.3 76.7 ± 0.6 64.4 ± 0.3 60.6 ± 0.9 72.0 ± 4.2 79.5 ± 0.7 2.8 ± 0.1 1.1 ± 0.0

+15.6%
AttrMasking + S2PGNN 71.9 ± 1.1 77.3 ± 0.4 66.8 ± 0.5 62.9 ± 0.4 74.8 ± 3.1 82.7 ± 0.8 1.7 ± 0.1 0.9 ± 0.0

GraphCL [30] 68.3 ± 1.6 74.1 ± 0.8 62.6 ± 0.5 59.7 ± 1.1 71.4 ± 6.2 75.8 ± 2.7 2.5 ± 0.1 1.0 ± 0.0
+10.1%

GraphCL + S2PGNN 70.8 ± 1.1 76.8 ± 0.5 66.6 ± 0.3 62.4 ± 1.2 75.2 ± 3.4 82.6 ± 2.3 1.9 ± 0.1 0.9 ± 0.0
GraphLoG [31] 66.5 ± 2.3 75.3 ± 0.3 63.3 ± 0.5 57.8 ± 1.2 69.6 ± 5.8 80.1 ± 2.4 2.5 ± 0.1 1.0 ± 0.0

+9.1%
GraphLoG + S2PGNN 69.9 ± 1.5 76.8 ± 0.3 66.1 ± 0.2 62.0 ± 1.0 75.8 ± 2.1 85.1 ± 1.3 2.0 ± 0.1 0.9 ± 0.0

MGSSL [32] 67.4 ± 1.8 75.0 ± 0.6 63.1 ± 0.5 58.0 ± 1.2 68.1 ± 5.4 81.2 ± 3.3 2.4 ± 0.1 1.0 ± 0.0
+9.6%

MGSSL + S2PGNN 69.4 ± 1.8 77.0 ± 0.6 66.3 ± 0.4 62.8 ± 1.2 76.7 ± 2.4 85.2 ± 1.2 1.9 ± 0.2 0.9 ± 0.0
SimGRACE [34] 67.9 ± 0.6 73.9 ± 0.5 61.9 ± 0.5 59.1 ± 0.7 61.1 ± 3.8 75.5 ± 1.4 2.6 ± 0.1 1.0 ± 0.0

+16.5%
SimGRACE + S2PGNN 69.3 ± 0.9 75.9 ± 0.2 65.8 ± 0.3 62.3 ± 0.6 73.6 ± 3.2 83.9 ± 1.5 1.6 ± 0.3 0.9 ± 0.0

GraphMAE [35] 70.0 ± 1.0 75.1 ± 1.4 64.4 ± 2.0 60.7 ± 1.1 71.7 ± 7.2 79.8 ± 4.2 2.3 ± 0.4 1.0 ± 0.1
+10.3%

GraphMAE + S2PGNN 70.3 ± 0.8 76.7 ± 0.8 66.4 ± 0.5 62.2 ± 0.6 77.0 ± 2.8 82.2 ± 1.2 1.6 ± 0.2 0.9 ± 0.0
Mole-BERT [40] 70.6 ± 1.4 77.4 ± 2.2 65.4 ± 1.9 61.9 ± 2.2 75.6 ± 3.1 77.4 ± 4.2 2.4 ± 0.4 1.0 ± 0.1

+14.5%
Mole-BERT + S2PGNN 71.4 ± 0.4 79.5 ± 0.4 67.8 ± 0.2 63.8 ± 0.5 76.5 ± 0.5 84.2 ± 0.7 1.5 ± 0.2 0.8 ± 0.0

over vanilla strategy on top of 10 classic GNN pre-training

methods (Tab. V) from various categories:

• AutoEncoding (AE): Given the partial access to graph,

AE methods propose to reconstruct the input graph via

autoencoder architecture [95]. Let G̃ be reconstructed graph,

then their objective is: Lssl(·) = −∑
G∈Dssl

log p(G̃|G).
• Autoregressive Modeling (AM): AM methods factorize in-

put graph G as a sequence of components C = {C1, C2, . . . }
(e.g., nodes, edges, and subgraphs) with some preset order-

ing and perform graph reconstruction in an autoregressive

manner: Lssl(·) = −∑
G∈Dssl

∑|C|
i=1 log p(Ci|C<i).

• Masked Component Modeling (MCM): MCM works masks

out some components of input graphs (e.g., nodes, edges,

and subgraphs), then aim to recover those masked ones

m(G) through the remaining ones G\m(G): Lssl(·) =
−∑

G∈Dssl

∑
Ĝ∈m(G) log p(Ĝ|G\m(G)).

• Context Prediction (CP): CP explores graph structures and

uses contextual information to design pre-training objec-

tives. Let t = 1 if subgraph C1 and surrounding context C2

share the same center node, otherwise t = 0. CP leverages

subgraphs to predict their surrounding context structures:

Lssl(·) = −∑
G∈Dssl

log p(t|C1, C2).
• Contrastive Learning (CL): CL conducts pre-training via

maximizing the agreement between a pair of similar in-

puts, including Cross-Scale Contrastive Learning and Same-

Scale Contrastive Learning. The former contrasts a pair

of graph and its local substructure (G,C) against neg-

ative pairs (G,C−): Lssl(·) = −∑
G∈Dssl

[log s(G,C)−∑
C− log s(G,C−)]], where s(·, ·) is the similarity function.

The latter maximizes the agreement between the augmented

graph and its anchor graph (G,G+) and meanwhile repel

negative pairs (G,G−): Lssl(·)=−∑
G∈Dssl

[log s(G,G+)−∑
C− log s(G,G−)]].

The main results on 8 downstream datasets are reported in

Tab. VI. When equipped with S2PGNN, the pre-trained GNNs

consistently demonstrate better fine-tuning performances on

the graph classification and graph regression tasks than the

vanilla fine-tuning. The gains are consistent on different

datasets with diverse characteristics (see Tab. IV), and the

average improvement across all datasets is significant (9.1% ∼
17.7%). Moreover, we also observe the superiority of S2PGNN

is agnostic to GNN pre-training configurations, such as SSL

strategy, SSL data, and attained pre-trained models (see Sec.

IV-A2 and Tab. V). To summarize, observations from Tab.

VI validate that S2PGNN fine-tuning provides a promisingly

better solution than the vanilla strategy to achieve the better

utilization of various pre-trained GNNs.

C. Comparison with other fine-tuning strategies
As discussed in Sec. II-B, we first investigate the vanilla

fine-tuning and regularized fine-tuning strategies since they

have already been adapted to the GNN area. Then, we explore

more fine-tuning methods on other domains (e.g., computer

vision) but have not been discussed in the GNN community.
1) GNN Fine-tuning Baselines: Apart from the vanilla

strategy (see main results in Sec. IV-B), we also com-

pare S2PGNN with another GNN fine-tuning work GTOT-

Tuning [48], which belongs to regularized fine-tuning. We

exclude AUX-TS [42] and WordReg [46] for baseline com-

parisons because: AUX-TS targets on different downstream

tasks, and WordReg uses different data split with [29] but its

code is not publicly available for reproducing results. Besides,

we additionally report the results of several regularized fine-

tuning baselines tailored from the computer vision domain

(that are originally designed to fine-tune CNNs), including

L2-SP [59], DELTA [60], BSS [61], and StochNorm [62]. L2-
SP regularizes on model parameters to induce the fine-tuned
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TABLE VII: The performance comparison between proposed S2PGNN fine-tuning and other fine-tuning strategies with fixed

ContextPred pre-training objective and GIN backbone architecture.

Classification (ROC-AUC (%)) ↑ Avg.Dataset BBBP Tox21 ToxCast SIDER ClinTox BACE
Vanilla fine-tuning 68.0 ± 2.0 75.7 ± 0.7 63.9 ± 0.6 60.9 ± 0.6 65.9 ± 3.8 79.6 ± 1.2 69.0

L2-SP [59] 68.2 ± 0.7 73.6 ± 0.8 62.4 ± 0.3 61.1 ± 0.7 68.1 ± 3.7 82.2 ± 2.4 69.3
DELTA [60] 67.8 ± 0.8 75.2 ± 0.5 63.3 ± 0.5 62.2 ± 0.4 73.4 ± 3.0 81.8 ± 1.1 70.6

BSS [61] 68.1 ± 1.4 75.9 ± 0.8 63.9 ± 0.4 60.9 ± 0.8 70.9 ± 5.1 82.4 ± 1.8 70.4
StochNorm [62] 69.3 ± 1.6 74.9 ± 0.6 63.4 ± 0.5 61.0 ± 1.1 65.5 ± 4.2 80.5 ± 2.7 69.1

GTOT-tuning [48] 70.0 ± 1.7 75.2 ± 0.9 63.0 ± 0.5 63.1 ± 0.6 71.8 ± 5.4 82.6 ± 2.0 71.0
S2PGNN (ContextPred) 70.9 ± 1.3 76.3 ± 0.4 67.0 ± 0.5 62.8 ± 0.3 75.9 ± 2.2 82.6 ± 0.7 72.6
S2PGNN (Mole-BERT) 71.4 ± 0.4 79.5 ± 0.4 67.8 ± 0.2 63.8 ± 0.5 76.5 ± 0.5 84.2 ± 0.7 73.9

TABLE VIII: The performance of more fine-tuning strategies that are excluded from S2PGNNX’s design space with fixed

ContextPred pre-training objective and GIN backbone architecture. Second best results are marked with underline.

Classification (ROC-AUC (%)) ↑ Avg.Dataset BBBP Tox21 ToxCast SIDER ClinTox BACE
Vanilla tuning 68.0 ± 2.0 75.7 ± 0.7 63.9 ± 0.6 60.9 ± 0.6 65.9 ± 3.8 79.6 ± 1.2 69.0

Feature extractor 58.9 ± 0.4 68.7 ± 0.4 59.3 ± 0.2 59.9 ± 0.3 40.5 ± 2.7 61.6 ± 4.5 58.2
Last-k (k = 3) 68.1 ± 0.9 75.1 ± 0.4 64.0 ± 0.5 60.7 ± 0.5 63.9 ± 4.5 79.1 ± 1.2 68.5
Last-k (k = 2) 65.3 ± 1.0 74.5 ± 0.5 63.0 ± 0.7 61.6 ± 0.6 64.0 ± 3.5 80.6 ± 1.2 68.2
Last-k (k = 1) 64.6 ± 1.3 73.0 ± 0.5 61.4 ± 0.5 60.8 ± 0.5 66.1 ± 2.4 76.6 ± 0.8 67.1

Adapter (m = 2) 61.2 ± 0.4 71.4 ± 0.3 60.6 ± 0.1 59.6 ± 0.3 45.3 ± 3.1 71.1 ± 0.9 61.6
Adapter (m = 4) 62.5 ± 0.7 71.7 ± 0.3 60.6 ± 0.2 59.6 ± 0.3 47.4 ± 2.2 74.4 ± 1.8 62.7
Adapter (m = 8) 63.9 ± 0.7 71.8 ± 0.3 60.5 ± 0.4 59.9 ± 0.3 50.0 ± 1.0 76.8 ± 0.9 63.8

S2PGNN 70.9 ± 1.3 76.3 ± 0.4 67.0 ± 0.5 62.8 ± 0.3 75.9 ± 2.2 82.6 ± 0.7 72.6

weights to be close to pre-trained weights. DELTA imposes

regularization on representations via the attention mechanism.

BSS penalizes small eigenvalues of learned representations to

suppress untransferable components. StochNorm regularizes

on the encoder architecture in a dropout-like way. Please refer

to Sec. II-B and Tab. II for more technical discussions.

The comparisons on 6 classific MPP datasets have been

summarized in Tab. VII. As shown in Tab. VII, we first observe

the non-negligible improvement brought by S2PGNN com-

pared with all baselines. Among baselines, regularized tech-

niques (DELTA, BSS) from computer vision domain some-

times yield slightly better results than the vanilla fine-tuning

strategy. However, in several cases (L2-SP, StochNorm), the

performance gains are not significant. This is probably due

to their ignorance of characteristics in graph data (e.g., graph

topology) and specific requirements in fine-tuning GNNs. By

taking the graph topology into consideration, the method

GTOT-Tuning, which is designed specifically to fine-tune

GNNs, demonstrates higher performances than regularized

variants extended from other domains. However, even the

most competitive baseline GTOT-Tuning is still inferior to

S2PGNN in 5 out of 6 datasets, indicating that the design

dimensions proposed in S2PGNN (see Sec. III-B and Tab.

II) may be indispensable and crucial designs towards more

effective GNN fine-tuning. Furthermore, we note that various

regularized strategies, such as GTOT-Tuning, is orthogonal to

the proposed S2PGNN. Therefore, it may be promising to

combine S2PGNN with other advanced regularized methods,

i.e., combine an additional regularization term in S2PGNN’s

loss function Eq. (15) and (16) to further boost its perfor-

mances, which we leave as future works.

2) Exploration of Other Fine-tuning Strategies: As men-

tioned in Sec. II-B and Remark 2, fine-tuning has been well

explored in the domains beyond GNNs. Therefore, we try

to investigate the performance of more fine-tuning strategies

that are promising in other domains. However, we conclude

that they may not be suitable for fine-tuning GNNs, thereby

we discard them from our search space. Overall, we explore

following fine-tuning strategies:

• Feature Extractor (FE): FE [69] proposes to reuse pre-

trained model parameters to achieve better knowledge

preservation. Once the pre-training is finished, all pre-

trained layers are frozen and pre-trained model works as

a pure feature extractor for downstream data. Only a small

amount of additional parameters in specific prediction head

are further tuned to perform downstream predictions.

• Last-k Tuning (LKT): With LKT [70], only parameters in

last-k layers of the pre-trained models are further tuned,

while the other initial layers are frozen and keep unchanged.

LKT resides between ST and FE, and is popular in the

computer version area [70]. In our experiments, we consider

k ∈ {1, 2, 3}, which means we use around 20% ∼ 60%
tunable parameters of the original model (where k = 5)

• Adapter-Tuning (AT): AT [44] proposes to fine-tune only a

small number of extra model parameters to attain the com-

petitive performance, which is promising to achieve faster

tuning and alleviate the over-fitting issue in natural language

process and computer vision areas. More specifically, it

adds small and task-specific neural network modules, called

adapters, to pre-trained models. These adapters involve

feature transformation R
d → R

m → R
d via the bottleneck

architecture, where m� d is to ensure parameter-efficient.
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(a) An example of fine-tuning strategy with feature extractor.

(b) An example of fine-tuning strategy with last-k (k = 3) tunable layers.

(c) An example of fine-tuning strategy with adapter.

Fig. 4: Illustration to other fine-tuning strategies (refer to Fig. 3 for the legend).

Adapters are inserted between pre-trained layers and trained

on the specific task, while the pre-trained layers remain

fixed and unchanged to preserve the knowledge learned

during pre-training. In our empirical explorations, we tai-

lor the adapter design in [44] and consider adapter size

m ∈ {2, 4, 8} to use only around 1.3% ∼ 5.2% tunable

parameters of the original model (where d = 300).

The results on classific MPP tasks are summarized in

Tab. VIII. Clearly, S2PGNN demonstrates consistent superior

results than other approaches. Directly using pre-trained GNN

as pure feature extractor (equivalent to k = 0) can reduce

the total number of tunable parameters during fine-tuning,

but it leads to the severe performance degradation on all 6

datasets. This indicates the fixed model may impede sufficient

adaption when dealing with various downstream datasets. By

gradually increasing tunable layers k (1 → 3), the performance

drop caused by insufficient adaption is mitigated. However, by

tuning only partial model parameters, Last-k still yield inferior

results than the vanilla strategy (equivalent to k = 5). Adapter

method, although has demonstrated competitive fine-tuning

capacity with the vanilla strategy when fine-tuning language

models in natural language processing domain, fails to yield

satisfactory results when fine-tuning GNNs for graph data.

To summarize, by investigating more fine-tuning strategies

that are promising in other domains, we conclude that they

may not be suitable for fine-tuning GNNs, which is probably

due to the domain divergence. Instead, specific and innovative

designs to fine-tune GNNs in graph domain is much more

demanded. The performance comparison in Tab. VIII also

indicates that the design dimensions in S2PGNN’s search

space may be more validated for searching the suitable fine-

tuning strategy in pre-trained GNNs.

D. Ablation study on S2PGNN’s design dimensions

To investigate S2PGNN’s important design dimensions (see

Sec. III-B) regarding GNN fine-tuning strategy: identity aug-

mentation, multi-scale fusion, and adaptive graph-level read-

out, we further propose S2PGNN variants with degraded space

and conduct ablation studies: S2PGNN-\id disables identity

augmentation when aggregating messages from neighbors;

S2PGNN-\fuse discards the multi-scale fusion and directly

uses the last-layer output as learned node representations as

most existing works does; S2PGNN-\read uses the simple

and fixed mean pooling as [29] and follow-up works.

The man results of S2PGNN’s variants are shown in Tab. IX.

Significant performances drop are observed in each S2PGNN

variant with degraded space, which provide empirical vali-

dation that the proposed design dimensions in S2PGNN are

key factors that affect GNN fine-tuning results and should

be incorporated during fine-tuning to achieve the optimal

downstream results.

E. Effect of GNN backbone architectures

Recent works [96] have identified that GNN backbone is

also crucial for GNN pre-training. Therefore, here we further

provide additional results of S2PGNN when built on top of

other classic GNN backbone architectures other than the GIN.

Tab. X summarizes the performance of S2PGNN based on

several pre-trained GNNs, including GCN, SAGE, and GAT

models via the SSL strategy ContextPred [29]. We observe

that pre-trained GNNs with all these backbone architectures

can benefit from S2PGNN fine-tuning and achieve better per-

formances than the vanilla strategy. This verifies that S2PGNN

is agnostic to the base GNN architectures and is capable to

achieve the consistent improvement.
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TABLE IX: The performance comparison among S2PGNN’s variants with degraded space.

Classification (ROC-AUC (%)) ↑ Regression (RMSE) ↓ Avg.
DropDataset BBBP Tox21 ToxCast SIDER ClinTox BACE ESOL Lipo

S2PGNN-\id 69.5 ± 2.0 75.9 ± 0.3 66.3 ± 0.4 61.3 ± 0.7 69.4 ± 6.3 79.5 ± 1.6 2.0 ± 0.3 0.9 ± 0.0 −5.2%
S2PGNN-\fuse 69.0 ± 1.5 75.7 ± 0.6 65.7 ± 0.4 61.6 ± 0.7 61.6 ± 4.4 82.0 ± 1.0 2.5 ± 0.1 1.0 ± 0.0 −12.1%
S2PGNN-\read 70.3 ± 1.6 75.2 ± 0.3 63.9 ± 0.3 62.2 ± 0.7 73.7 ± 4.4 80.3 ± 1.7 2.7 ± 0.0 1.0 ± 0.0 −12.3%

S2PGNN 70.9 ± 1.3 76.3 ± 0.4 67.0 ± 0.5 62.8 ± 0.3 75.9 ± 2.2 82.6 ± 0.7 1.7 ± 0.2 0.9 ± 0.0 -

TABLE X: The performance comparison between proposed S2PGNN fine-tuning and vanilla fine-tuning strategies with fixed

ContextPred pre-training objective and other popular GNN backbone architectures.

Classification (ROC-AUC (%)) ↑ Regression (RMSE) ↓ Avg.
GainDataset BBBP Tox21 ToxCast SIDER ClinTox BACE ESOL Lipo

ContextPred (GCN) 64.6 ± 2.2 73.0 ± 0.5 61.9 ± 1.1 56.8 ± 0.6 69.0 ± 1.3 79.9 ± 1.7 2.4 ± 0.1 1.0 ± 0.0
+4.6%

ContextPred (GCN) + S2PGNN 68.3 ± 1.0 75.7 ± 0.5 66.5 ± 0.3 62.3 ± 0.4 71.6 ± 1.3 81.5 ± 0.5 2.3 ± 0.1 1.0 ± 0.0
ContextPred (SAGE) 65.0 ± 3.0 74.7 ± 0.5 63.4 ± 0.2 62.0 ± 0.6 61.1 ± 3.1 78.8 ± 1.4 2.5 ± 0.1 1.0 ± 0.0

+6.0%
ContextPred (SAGE) + S2PGNN 69.0 ± 1.4 75.1 ± 0.4 66.4 ± 0.6 61.6 ± 0.4 67.1 ± 1.6 79.1 ± 0.7 2.0 ± 0.2 1.0 ± 0.0

ContextPred (GAT) 64.9 ± 1.2 69.6 ± 0.7 59.5 ± 0.8 52.5 ± 3.4 58.2 ± 6.9 60.5 ± 3.5 3.2 ± 0.1 1.1 ± 0.0
+19.7%

ContextPred (GAT) + S2PGNN 69.6 ± 0.9 75.0 ± 0.4 65.3 ± 0.3 61.8 ± 1.1 66.7 ± 3.2 80.4 ± 1.3 1.8 ± 0.1 1.0 ± 0.0

TABLE XI: The running time (seconds per epoch) of several fine-tuning strategies.

Classification Avg.Dataset BBBP Tox21 ToxCast SIDER ClinTox BACE
Vanilla fine-tuning 5.2 14.0 11.3 3.3 2.7 6.8 7.2

L2-SP [59] 5.3 23.8 27.3 5.3 6.8 4.3 12.1
DELTA [60] 5.7 11.4 11.1 5.8 3.2 5.0 7.0

BSS [61] 6.2 30.8 6.5 24.9 70.9 6.1 24.2
StochNorm [62]. 4.5 17.8 31.1 3.3 3.3 3.8 10.6

GTOT-tuning [48] 5.7 22.7 34.1 4.6 3.0 11.3 13.6
S2PGNN 13.3 16.5 18.3 13.3 18.0 14.0 15.6

F. Efficiency

Apart from the effectiveness results provided in previous

subsections, here we further report the concrete running time

comparisons among several fine-tuning baselines. As shown

in Tab. XI, we observe that the running time of S2PGNN

is comparable with fine-tuning baselines, which eliminates

the concern that the fine-tuning search method in S2PGNN

may consume more computing resources to achieve improved

perform ances. As demonstrated in Remark 3 and Tab. III,

given that the space complexity in S2PGNN is O(|Oconv|K ·
|Oid|K · |Ofuse| · |Oread|) and the real space size built on

the 5-layer GNN in our empirical study will have 10,206

candidate fine-tuning strategies, it further verifies that the

proposed search algorithm in Sec. III-C is indeed powerful to

tackle the effiency challenge (as mentioned in Sec. I) behind

the fine-tuning search problem in this work.

V. CONCLUSION

In this paper, to fully unleash the potential of pre-trained

GNNs on various downstream graph and bridge the missing

gap between better fine-tuning strategies with pre-trained

GNNs, we propose to search to fine-tune pre-trained GNNs for

graph-level tasks, named S2PGNN. To achieve this, S2PGNN

first investigates fine-tuning within and outside GNN area to

identify key factors that affect GNN fine-tuning results and

carefully present a novel search space that is suitable for GNN

fine-tuning. To reduce the search cost from the large and

discrete space, we incorporate an efficient search algorithm

to suggest the parameter-sharing and continuous relaxation

and solve the search problem by differentiable optimization.

S2PGNN is model-agnostic and can be plugged into existing

GNN backbone models and pre-trained GNNs. Empirical

studies demonstrate that S2PGNN can consistently improve

10 classic pre-trained GNNs and achieve better performance

than other fine-tuning works. Therefore, we expect S2PGNN

to shed light on future directions towards better GNN fine-

tuning innovation. For the future works, it may be worth trying

to investigate how to derive a more robust and transferrable

pre-trained GNNs that can be more easily adapted for various

downstream graph scenarios.
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[14] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[15] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?,” arXiv preprint arXiv:1810.00826, 2018.

[16] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka,
“Representation learning on graphs with jumping knowledge networks,”
in International conference on machine learning, pp. 5453–5462,
PMLR, 2018.

[17] P. Li, Y. Wang, H. Wang, and J. Leskovec, “Distance encoding: De-
sign provably more powerful neural networks for graph representation
learning,” Advances in Neural Information Processing Systems, vol. 33,
pp. 4465–4478, 2020.

[18] E. Chien, J. Peng, P. Li, and O. Milenkovic, “Adaptive universal general-
ized pagerank graph neural network,” arXiv preprint arXiv:2006.07988,
2020.

[19] J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra,
“Beyond homophily in graph neural networks: Current limitations and
effective designs,” Advances in neural information processing systems,
vol. 33, pp. 7793–7804, 2020.

[20] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in International
conference on machine learning, pp. 1263–1272, PMLR, 2017.

[21] Z. Wang, S. Di, and L. Chen, “Autogel: An automated graph neural
network with explicit link information,” Advances in Neural Information
Processing Systems, vol. 34, pp. 24509–24522, 2021.

[22] Z. Wang, S. Di, and L. Chen, “A message passing neural network space
for better capturing data-dependent receptive fields,” in Proceedings of
the 29th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, pp. 2489–2501, 2023.

[23] M. Zhang and Y. Chen, “Link prediction based on graph neural net-
works,” Advances in neural information processing systems, vol. 31,
2018.

[24] M. Zhang and Y. Chen, “Inductive matrix completion based on graph
neural networks,” arXiv preprint arXiv:1904.12058, 2019.

[25] M. Zhang, P. Li, Y. Xia, K. Wang, and L. Jin, “Revisiting graph neural
networks for link prediction,” 2020.

[26] Y. Li, Y. Shen, L. Chen, and M. Yuan, “Zebra: When temporal graph
neural networks meet temporal personalized pagerank,” Proceedings of
the VLDB Endowment, vol. 16, no. 6, pp. 1332–1345, 2023.

[27] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec,
“Hierarchical graph representation learning with differentiable pooling,”
Advances in neural information processing systems, vol. 31, 2018.

[28] L. Wei, Z. He, H. Zhao, and Q. Yao, “Search to capture long-range
dependency with stacking gnns for graph classification,” arXiv preprint
arXiv:2302.08671, 2023.

[29] W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. Pande, and J. Leskovec,
“Strategies for pre-training graph neural networks,” arXiv preprint
arXiv:1905.12265, 2019.

[30] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph con-
trastive learning with augmentations,” Advances in neural information
processing systems, vol. 33, pp. 5812–5823, 2020.

[31] M. Xu, H. Wang, B. Ni, H. Guo, and J. Tang, “Self-supervised graph-
level representation learning with local and global structure,” in Inter-
national Conference on Machine Learning, pp. 11548–11558, PMLR,
2021.

[32] Z. Zhang, Q. Liu, H. Wang, C. Lu, and C.-K. Lee, “Motif-based graph
self-supervised learning for molecular property prediction,” Advances
in Neural Information Processing Systems, vol. 34, pp. 15870–15882,
2021.

[33] S. Liu, H. Wang, W. Liu, J. Lasenby, H. Guo, and J. Tang, “Pre-training
molecular graph representation with 3d geometry,” arXiv preprint
arXiv:2110.07728, 2021.

[34] J. Xia, L. Wu, J. Chen, B. Hu, and S. Z. Li, “Simgrace: A simple
framework for graph contrastive learning without data augmentation,” in
Proceedings of the ACM Web Conference 2022, pp. 1070–1079, 2022.

[35] Z. Hou, X. Liu, Y. Cen, Y. Dong, H. Yang, C. Wang, and J. Tang,
“Graphmae: Self-supervised masked graph autoencoders,” in Proceed-
ings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 594–604, 2022.

[36] J. Xia, Y. Zhu, Y. Du, and S. Z. Li, “Pre-training graph neural networks
for molecular representations: retrospect and prospect,” in ICML 2022
2nd AI for Science Workshop, 2022.

[37] D. Erhan, A. Courville, Y. Bengio, and P. Vincent, “Why does unsuper-
vised pre-training help deep learning?,” in Proceedings of the thirteenth
international conference on artificial intelligence and statistics, pp. 201–
208, JMLR Workshop and Conference Proceedings, 2010.

[38] Y. Liu, M. Jin, S. Pan, C. Zhou, Y. Zheng, F. Xia, and S. Y. Philip,
“Graph self-supervised learning: A survey,” IEEE Transactions on
Knowledge and Data Engineering, vol. 35, no. 6, pp. 5879–5900, 2022.

[39] Z. Hu, Y. Dong, K. Wang, K.-W. Chang, and Y. Sun, “Gpt-gnn:
Generative pre-training of graph neural networks,” in Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pp. 1857–1867, 2020.

[40] J. Xia, C. Zhao, B. Hu, Z. Gao, C. Tan, Y. Liu, S. Li, and S. Z. Li, “Mole-
bert: Rethinking pre-training graph neural networks for molecules,” in
The Eleventh International Conference on Learning Representations,
2022.

[41] J. Qiu, Q. Chen, Y. Dong, J. Zhang, H. Yang, M. Ding, K. Wang,
and J. Tang, “Gcc: Graph contrastive coding for graph neural network
pre-training,” in Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 1150–1160,
2020.

[42] X. Han, Z. Huang, B. An, and J. Bai, “Adaptive transfer learning on
graph neural networks,” in Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, pp. 565–574,
2021.
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