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Abstract—Graph self-supervised learning aiming to learn the
graph representation without much label information is an im-
portant tasks in data mining and machine learning since labeled
graph data is scarce and expensive to obtain in the real world.
Contrastive learning emerges as a promising solution. However,
we show existing graph contrastive learning (GCL) models have a
significant issue: they generate representations that collapse into
a low-dimensional subspace, resulting in a loss of information and
diversity. We believe this issue arises from the strong assumption
in current GCL methods that all positive samples should be close
and all negative samples should be far in the representation
space. From a data engineering view, this assumption fails to
deeply mine the graph data and oversimplifies the complexity and
heterogeneity of graph data, leading to clustered and redundant
representations. To address this issue, we propose GradGCL,
a novel method that leverages intrinsic gradient information
as an additional input signal to regularize GCL training. The
gradient information reflects the optimization process of the
representations with respect to the contrastive loss, providing a
complementary perspective to the representations. Furthermore,
we have designed a soft separation strategy that relaxes the
hard separation strategy between positive and negative samples,
allowing for more flexibility and diversity in the representation
space. We have conducted extensive experiments on various
graph-related tasks, using different types of contrastive losses,
datasets, and model architectures. We demonstrate that gradients
alone can learn graph information and achieve competitive results
with representation-based GCL methods. We also show that
GradGCL can enhance existing GCL models and prevent the
issue of dimensional collapse.

Index Terms—contrastive learning; gradient analysis; graphs

I. INTRODUCTION

Deep learning models have achieved remarkable perfor-

mance in various tasks, such as computer vision, natural lan-

guage processing, speech recognition [27] and database [54].

However, these models require a large amount of labeled data,

which is often scarce, expensive, or unavailable in the real

world [21]. In data mining and machine learning community,

learning data representations with minimal label information

is a critical task. To address this challenge, contrastive learn-

ing [3] has emerged as a promising technique for learning

from unlabeled data. It has been successfully applied to

various tasks [21] including data management [2], [52], rec-

ommendation systems [28], [60], community search [30], and

temporal data mining [62], [64]. Graph contrastive learning

(GCL) is a branch of contrastive learning that focuses on

learning graph representations without much label information.

Graphs are ubiquitous data structures that can capture complex

†Corresponding author

(a) Dim = 80 (b) Dim = 160

(c) Dim = 320 (d) Dim = 640

Fig. 1. The spectrum of Singular value of the representaion space. The repre-
sentation are obtained from the pre-train SimGRACE and GraphCL model on
the IMDB-BINARY dataset. The sorted singular values are computed from
the representaiton covariance matrix shown in logarithmic scale. The detail of
calculation are shown in III-A.The length of embedding vector is 80 in (a),
160 in (b), 320 in (c) and 640 in (d). The zero singualr values on the right
suggest dimension collapse.

relationships among entities, such as molecular structures [55]

and knowledge graphs [6], [8]. How to mine the graph infor-

mation unsupervisedly is an improtant question in data mining

and machine learning community [32]. GCL has shown its

effectiveness in various graph-related tasks, such as node clas-

sification [10], [13], [29], [69], [70], graph classification [13],

[33], [47], [59], [65], [66] and transfer learning tasks [7], [59],

[65], [66]. The main idea of GCL is to apply graph-specific

data augmentation strategies, such as node dropping, edge

deletion, or subgraph sampling, to generate different views

of the same graph. Then, the agreement between the views is

maximized in the representation space, while the disagreement

between views from different graphs is minimized. This can

be formulated as maximizing the mutual information (MI)

between the views [16].

However, this assumption alone might not fully exploited

the graph information and harm the performance on down-

stream tasks. The relatively strong assumption that all similar

samples should be close to each other and all dissimilar

samples should be apart in the representation space of existing

GCL methods may cause the dimensional collapse issue [22].

It means that the learned representations tend to be concen-
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trated in a low-dimensional subspace, losing the richness and

diversity of the original data features as shown in Fig. 1. The

spectrum of singular values of the representation space are

sorted and plotted in a logarithmic scale. The zero singular

values on the right indicate dimension collapse. We suppose

the current strong assumption of GCL that lack of mining the

graph data deeply leads to a hard separation strategy. It tries

to minimize the distance in the representation space between

all positive samples created by different data augmentation

techniques which may overlook the graph data information.

This strategy may encourage the model to prefer low-rank

representations that can easily separate the samples, but ignore

some important information of the original data.

To alleviate the issues from a data engineering view, it

would be ideal to obtain more graph data information that can

help discriminate the samples while maintaining the intrinsic

similarity unsupervisedly. More information can relax the hard

separation strategy by providing more complementary view to

the model. This way, the model can preserve more information

of the original data and avoid shrinking the representation

space. However, this idea also raises some questions and

challenges that need to be answered: How to provide the

complementary information? Since the label information is

scarce and limited, we may not have enough supervised data

for training. One possible way is to leverage other self-

supervised information other than the current ones. How to

balance the trade-off between separation and preservation? If

we focus more on the preservation, the model may lose the

discriminative power and fail to distinguish different classes

or clusters. If we focus more on the separation, the model

may still suffer from dimensional collapse and ignore some

important features. We need to find a suitable balance point

that can achieve both objectives. How to optimize the objective

function that incorporates the new strategy and complementary

information? One can design a new loss function that directly

accounts for the new strategy and information, but this may

require careful analysis and derivation and make it compatible

with the contrastive loss.

In this paper, we propose a soft separation strategy to

alleviate the above issues from the data engineering view by

further utilizing the intrinsic gradients information to provide

complementary view other than representations. Gradients of

neural networks are widely used in neural network visual-

ization [67], explanation [44] and data selection [23], [35],

[51]. For example, the samples with gradient close to the

average gradient of a group of data points can be regarded as

the representative samples [23]. In the context of contrastive

learning , gradients, revealing the specific relation between

data and model, can be regarded as the “strength” of how

the model push or pull different samples [12]. Other than

the representations, gradients can provide complementary in-

formation about data-model relations. Thus, instead of using

the hard separation strategy that pulls all the positive samples

closer, gradients can potentially provide a soft separation one

by adjusting the forces to pull them. In other words, previous

models only rely on the similarity of data representations to

forcibly distinguish the positive or negative samples. Instead,

the gradients may provide complementary information about

how the representations are optimized by the model.

Following these ideas about gradients, we propose a novel

method, named Gradient Contrastive Learning (abbreviated

to GradGCL), to enhance the performance of existing GCL

models. More specifically, since the general neural networks

are based on backpropagation [15] with gradient descent [43],

we calculate the gradient vectors concerning the given features

and use them as input for contrastive loss. Then, we introduce

this new contrastive loss into existing designs so that GradGCL

can be a plug-in module for different GCL models. The

contributions are summarized as follows:

• We reveal the dimensional collapse issue in graph con-

trastive learning. To alleviate such an issue, we propose a

novel graph contrastive learning method GradGCL based

on gradients.

• We show that GradGCL can maximize the mutual in-

formation between the data and its representation and

alleviate the dimensional collapse issue mathematically.

GradGCL also empirically improves the representation

quality compared with the previous methods.

• We demonstrate that GradGCL can improve the model

performance of many existing graph contrastive learning

methods across different tasks on different datasets.

II. RELATED WORK

A. Gradients and data engineering

Gradients of neural networks are widely used in differ-

ent tasks. In neural network visualization [67] and explana-

tion [44], for example, Grad-CAM [44] maps the gradients

w.r.t the weights of neural network with the original pixels of

images to understand why the model makes the prediction. In

data engineering, Grad-Match [23] use gradients to help the

data selection process. The samples with gradient close to the

average gradient of a group of data points can be regarded as

the representative samples [23]. Moreover, some works [26],

[35] try to use the gradients as features. For instance, [35]

use gradients as features to approximate the neural network

linearly. However, previous works mainly focus on image data

and linear setting, gradients information for graph data are less

explored. We further use it in the GCL domain to alleviate the

dimension collapse issue.

B. Graph and Graph Neural networks

A graph can be represented by a tuple G = (V,X,A)
where V is the node-set, X ∈ R

|V |×d is the node at-

tributes and A ∈ R
|V |×|V | is corresponding adjacency ma-

trix represents the connectivity of the graph. Let a ∈ Na

is the nodes connected with node a. Generally, the node

classification task aims to classify a node in the graph into

multi-classes such as f : V → Y , and graph classification

task aims to classify a graph into different categories as

f : {G} → Y . Graph neural networks [24] aim to map

the graph data into the embedding space by first iteratively

aggregating the neighborhood information to obtain the node
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representation ha: hl+1
a = σ(Ahl

aW
l), where hl

v is the node

representation of node v in the lth layer, A is the normalized

adjacency matrix and σ is a nonlinear transformation. Then,

a readout [61] phase can get the graph representation hG:

hG = READOUT(ha|a ∈ V ), where READOUT is usually

a permutation invariant function like MEAN function [56]. For

simplicity, we note this process as a encoder fθ(·) parameter-

ized by θ. For a given graph G, a graph neural network maps

it to a corresponding graph representation hG = fθ(G). h
represents the graph representation in the following chapters.

C. Graph self-supervised learning

There are generally two kinds of self-supervised methods

[57] to learn the graph representation without much label infor-

mation: the generative self-supervised learning and contrastive

learning. Followed by success in computer version [14] and

natural [5], generative self-supervised learning evolves in the

graph domain and aims to predict the missing information in

the original data. GROVER [41] leverages the transformer-

like architecture and obtains the representation by predict-

ing graph context and subgraph information. GPT-GNN [20]

leverages the autoregressive model framework and maximizes

the likelihood of graph data by generating the edges, and the

node attributes orderly. Other methods [25], [38], [50] utilize

VAE (variational autoencoder) and reconstruct the structural

information or features. Recently, GraphMAE [17] has im-

proved the performance of generative graph self-supervised

methods to be comparable with contrastive learning ones

that we will introduce in the following part. It focuses on

feature reconstruction with masking, replaces the MSE loss

with scaled cosine loss, and re-masks the embedding of the

encoder before decoding.

Compared with graph generative self-supervised learn-

ing, the contrastive learning is another popular graph self-

supervised learning methods that is simple and effective.

Graph contrastive learning aims to pull positive samples closer

and push negative samples away by maximizing the mutual

information between different data information versions as:

argmax
θ

I(Iθ(x), I′θ(x)), (1)

where I is the information of data parameterized by θ and I′

is the modified data information. Note that x and u is denoted

as the raw features and representations of one data instance

because different models may focus on either node or graph

classification tasks.The data information can be extracted with

different ways. In the previous methods, the data information is

represented by the extracted representations from the encoder,

that is, use representation as the information extractor. The

contrastive learning goal can be formulated as:

argmax
θ

I(fθ(x),fθ(x
′)), (2)

where θ is the model parameters, x,x′ is the different data

versions. Various methods have different modelings of Eq. (2).

Perturbation Pert(·) is defined as the technique to produce

a slightly different representation of the original data point.

For a given graph g, h is the original representation and

h′ = Pert(f(g)) is the perturbed representation. Perturbation

techniques used include data augmentation, feature enhance-

ment, and encoder perturbation. Based on how to create or

find out different versions of information, the methods can be

divided into three groups. The first is the data-augmentation-

based methods which perturb the graph information on the data

instance level to create a new version of data. For example,

GraphCL uses strategies like node dropping, edge deletion,

and attribute masking to augment the input and obtain the

augmented version. Then it maximizes the agreement between

two input versions to learn the data information and produce

graph representation for downstream tasks. The second is fea-

ture enhancement-based or feature-level perturbation methods

that use feature information from different levels or angles

and contrast these features to learn the data information. For

example, they can contrast between local and global features

or features from multi-views. The third one perturbs the

encoder level and is classified as an encoder perturbation-based

method. Instead of changing the original data or features, it

adds noise to the encoder to obtain another perturbed encoder.

It produces data representation by the two encoders to do

contrastive learning.

Then extract graph representations accordingly. This process

usually follows by a projection phase. Projection head is a

neural network Proj, usually a MLP, projects the graph repre-

sentation h to another embedding space: u = Proj(h),u′ =
Proj(h′). The transformation improves the performance by

comparing the similarity in the new vector space [3], [4].

Finally, the model will maximize the mutual information.

However, MI is usually intractable. People try to estimate it

with different approaches and losses like InfoNCE [16], [37],

JSD [16] are proposed. It is shown that optimizing the losses

is equivalent to maximize the lower bound of MI. That is, this

loss serve as good estimators for MI:

I(u1,u2) ≥ −�InfoNCE(u1,u2) + log(N) (3)

To maximize the lower bound of mutual information is equi-

lvalent to minimize the losses as shown in (3). Contrastive

loss aims to attract the positive samples and push the negative

samples away. Mathematically, it usually contains a similarity

function and tends to increase the similarity between positive

samples and punish one of the negative samples. The InfoNCE

loss is the most widely used one.

�fn = − log
exp (sim (un,u

′
n))/τ)∑N

n′=1,n′ �=n exp (sim (un,u′
n) /τ)

, (4)

where τ is the hyperparameter temperature and sim is a

similarity function like cosine similarity. There are other

kinds of contrastive loss but share a similar definition. These

methods contrasting at the representation level can miss some

data information contained in the encoder and use a hard

separation strategy that may cause some trouble based on their

assumption.
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(a) Representations of MUTAG (b) Gradients of MUTAG (c) Representations of IMDB (d) Gradients of IMDB

Fig. 2. t-SNE visualization of representation and gradient distribution of MUTAG and IMDB-BINARY datasets with SimGRACE as backbone. The plots (a)
and (c) show the model classified the two classes shown with different colors. The plots (b) and (d) show the corresponding gradient distribution of these
representations with different patterns. This suggests that the gradient provide complementary information of the data.

III. METHODOLOGY

In this section, we first present some potential issues of ex-

isting graph contrastive learning models by motivational exper-

iments, then we show how gradients may alleviate such issues.

Based on the empirical observation, we formally introduce the

proposed technique to enhance the general contrastive learning

models and show some empirical evidences to demonstrate the

advantages of the gradients.

A. Motivational Experiments

1) The Dimensional Collapse Issue: Previous research [22]

has shown that current contrastive learning models have a

dimensional collapse issue. The encoder model projects the

original data into the representation space. However, it is

found that the representation obtained only spans in a lower

dimensional subspace among the entire representation space

[22]. Some collapsed dimension suggest the representations

are less informative.

We employ SimGRACE [59], one state of art contrastive

learning model, to show the preliminary results. The model

is trained on IMDB-BINARY [34] data set on unsupervised

graph classification tasks. We output the representations U ∈
R

|U |×d from the trained model representing n data points of

IMDB-BINARY, where U = [u�
1 ,u

�
2 , ...,u

�
n ]. We calculate

the covariance matrix C ∈ R
d×dof the representations U as:

C =
1

n

n∑
i=1

(ui − ū)(ui − ū)T , (5)

where ū = 1
n

∑n
i=1 ui. Then, we output the singular value of

it, C = LSV T and S = diag(σk). We plot the sorted singular

value in logarithmic scale {log(σk)} in Fig. 1. The dimension

d of represention is chosen from {160, 320, 640}.

Obviously, the results in Fig. 1 show that the a part

of singular values is zero suggesting that some dimension

collapse. We argue that this problem comes from the hard

assumption behind the current contrastive learning goal. The

general graph contrastive learning model aims to maximize

the agreement between positive pairs by attracting all the

similar samples closer and push away all the negative samples

in the representation space. To achieve this, the model may

“cheat” itself to provide low-rank representations to make

instance wise separation easier. For example, if there are 20

data samples where 10 of them belong to class 1 and the rest

10 belong to class 2, it is easy to represent them with one-

hot vectors and for class 1, the non-zero elements appear only

in the first 10 positions of the vectors. However, low-rank

representations may contain less information of the original

data and be harmful for downstream tasks. Thus, existing

works may need to be enhanced.

2) The Role of Gradient in Graph Contrastive Learning:
As discussed previously, existing graph contrastive learning

models may suffer from the dimension collapse issue because

its hard assumption. In this subsection, we discuss the role

of Gradient in Graph Contrastive Learning and its potential

information. Formally, the gradient gθ(u) =
∂�fn
∂u

of Eq. (4) w.r.t the representation u can be calculated as:

(1− exp(uTv+/τ)

Z(u)
)/τv+ −

∑
v−

exp(uTv−/τ)
Z(u)

/τv−, (6)

where u = fθ(x) and θ is model parameters.

The partition function Z(ui) is defined as:

Z(ui) =
∑N

j=1,j �=i exp(u
T
i uj/τ). Note that v+ and

v− are the representations of the positive sample and negative

samples of u. In Eq. (6), we may observe that several points:

1) for positive samples, if their similarity is low, the gradient

w.r.t the samples are large. As a result, the model will

increase their similarity to lower the contrastive loss; 2) for

negative samples, if their similarity is large, the corresponding

magnitude of the gradient will be significant. Thus, the model

will tend to lower the similarity to obtain a smaller loss.

In summary, the calculation way of gradients in existing

graph contrastive learning models can force the model to pull

positives pairs closer and push the negative ones away.

But we also observe that Eq. (6) may contain more fine-

grained information at the instance-level, i.e., the similarity

among samples of one data instance. To verify this, we

implement the advanced work SimGRACE [59] that pre-

trained on the MUTAG [34] data set (binary classes) for

the unsupervised graph classification task. Then, as shown

in Fig. 2, we visualize the representations and gradients of

SimGRACE with the help of TSNE technique. Note that we

treat the outputs of Eq. 6 as the representations of gradients.

The nodes with two colors in Fig. 2 represents the representa-

tion/gradient distribution of two classes of graphs in MUTAG.

Compared with Fig. 2 (a), the representations in Fig. 2 (b) are

1174

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 15,2024 at 07:03:51 UTC from IEEE Xplore.  Restrictions apply. 



(a) Representation Similarty of MU-
TAG

(b) Gradient Similarity of MUTAG (c) Representation Similarity of
IMDB

(d) Gradient Similarity of IMDB

Fig. 3. Instance-wise representation and its gradients similarity heatmap of MUTAG and IMDB-0BINARY datasets based on the pre-train SimGRACE model.
(a) and (c) are for the representations and (b) and (d) represent the gradient. It is shown that the similarity of gradients is more diverse compared with the
representations’.

more diverse, indicating the gradients have more fine-grained

information regarding the correlations among data instances.
Thus, as shown in Fig. 3, we further visualize the instance-

wise cosine similarity of representations cosine sim(u,u′)
and gradients cosine sim(gθ(u), gθ(u

′)) of 188 graphs in

MUTAG. Two diagonal blocks in Fig. 3(a) with deep color

indicate that the representations of graphs have high intra-class

similarities, while another two blocks with light color mean

that the representations have low inter-class similarities. This

observation verifies that existing graph contrastive learning

models tend to distinguish the classes while ignoring the

internal correlation of samples in one class. In other words,

existing models may not be able to distinguish samples that

are similar in terms of features but do not belong to the same

class, i.e., failing to handle hard negative samples. On the

contrary, we may observe that the similarities in Fig. 3(b) are

more diverse, which may be able to capture the correlation at

the level of instances.
As a conclusion, gθ(u) show in Eq (6) can serve as a

information extractor just like the encoder u = fθ(x). We

will show this from the mutual information view.

B. GradGCL
In this subsection, we introduce the proposed enhancement

technique for graph contrastive learning methods as shown

in Fig. 4 and show that gradients can maximize the mutual

information between different data versions and gradients

contrastive learning acts as a pairwise regularization module

together with representations.
Based on the observation in Sec. III-A, we argue that the

information of data can be shown into two parts: 1) repre-

sentations by fθ(x), 2) gradients in the learning procedure.

Therefore, we can formulate the information of Iθ(x) as:

Iθ(x) ⊇ I(fθ(x)) ∪ I(gθ(x)), (7)

Eq. (7) suggests that we can maximize the mutual information

based on fθ(x) and gradients gθ(x). Let

I(Iθ(x), Iθ(x′))
= (1− a)I(fθ(x),fθ(x

′)) + aI(gθ(x), gθ(x′))
(8)

be the mutual information. Then, the optimization goal can be

formally formulated as:

argmax
θ

(1− a)I(fθ(x),fθ(x
′)) + aI(gθ(x), gθ(x′)), (9)

where a controlls the weight of the gradients part. When

a = 0, it degrades to the classic contrastive learning goal.

We further derive the lower bound of I(Iθ(x), Iθ(x′)) as:

(1−a)I(fθ(x),fθ(x
′))+aI(gθ(x),gθ(x′))

≥ −(1− a)�fn − a�gn + log(N).
(10)

1) Gradients and Mutual Information: The infoNCE loss
is a type of contrastive loss for self-supervised learning. It

is based on the idea of noise-contrastive estimation, which

is a method to estimate the mutual information between two

variables with a classifier to distinguish between positive and

negative samples. The infoNCE loss can be written as:

−EX

[
log

sim(I(xt), I(x
′
t))∑

xj∈X sim(I(xj), I(x′
t))

]
, (11)

where X = {x1, . . . , xN} is a set of N random samples

containing one positive sample from p(xt|x′
t) and N − 1

negative samples from the proposal distribution p(xt), x
′
t is the

context variable, sim is a function that measures the similarity

between two variables and I(xt) is the information with the

data, for example, I(xt) = gθ(x) means we use the gradient

as the data information.

Lemma 1. The infoNCE loss can be seen as a lower bound
on the mutual information between I(xt) and I(x′

t):

I(I(xt); I(x
′
t)) = Ep(I(xt),I(x′

t))

[
log

p(I(xt), I(x
′
t))

p(I(xt))p(I(x′
t))

]
(12)

Proof. To show this, we can use the following steps:

First, we rewrite the infoNCE loss as:

LN = −EX

[
log

p(I(xt)|I(x′
t)) sim(I(xt), I(x

′
t))∑

xj∈X p(I(xj)) sim(I(xj), I(x′
t))

]

+ EX

[
log

p(I(xt))

p(I(xt)|I(x′
t))

] (13)

by multiplying and dividing by p(I(xt)|I(x′
t)) inside the

logarithm.

Next, we use Jensen’s inequality, which states that for any

convex function φ and any random variable Y , we have:

φ(E[Y ]) ≤ E[φ(Y )]. (14)
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Fig. 4. The overview of GradGCL. Instead of contrasting between representations, we also contrast samples based on gradients. The agreement of gradients
is maximized after projection. For sample x, x′ is the positive samples and xneg is the negative sample. When combined with representations, GradGCL
serves as a pairwise regularization module, facilitating the alignment of positive samples during optimization.

Applying this to the negative logarithm function and the first

term of the infoNCE loss, we get:

− logEX

⎡
⎣ ∑
xj∈X

p(I(xj)) sim(I(xj), I(x
′
t))

p(I(xt)|I(x′
t)) sim(I(xt), I(x′

t))

⎤
⎦

≤ −EX

⎡
⎣log ∑

xj∈X

p(I(xj)) sim(I(xj), I(x
′
t))

p(I(xt)|I(x′
t)) sim(I(xt), I(x′

t))

⎤
⎦ .

(15)

Then, we notice that the left-hand side of the inequality can

be simplified as:

− logEX

⎡
⎣ ∑
I(xj)∈X

p(I(xj)) sim(I(xj), I(x
′
t))

p(I(xt)|I(x′
t)) sim(I(xt), I(x′

t))

⎤
⎦

= − log p(I(x′
t))− log sim(I(x′

t), I(x
′
t)) + logN,

(16)

where we use the fact that EX [p(I(xj))] = 1 and∑
xj∈X sim(I(xj), I(x

′
t)) = N sim(I(x′

t), I(x
′
t)).

Finally, we rearrange the terms and obtain:

�N + log p(I(x′
t)) + log sim(I(x′

t), I(x
′
t))− logN

≤ −EX

[
log

p(I(xt)|I(x′
t))

p(I(xt))

]
,

(17)

the term on the right hand side is exactly the I(I(xt); I(x
′
t)),

which shows that the infoNCE loss is a lower bound.

To maximize the lower bound of the mutual information

between different versions of data information in Eq. (10) is

equivalent to minimize the loss function as:

�n = (1− a)�fn + a�gn. (18)

Note that �fn is the classic general loss in graph contrastive

learning as Eq. (4) presented. Similarly, we introduce the

infoNCE loss to model the contrastive loss �gn for gradient:

�gn = − log
exp (sim (gn, g

′
n))/τ)∑N

n′=1,n′ �=n exp (sim (gn, gn′) /τ)
. (19)

In conclusion, utilizing gradients alone can maximize the

mutual information between different data versions, making

them valuable for contrastive learning. As shown in Fig. 4 and

Eq. (18), gradient contrastive learning for graphs (GradGCL)

act as a pairwise regularization module, which can be im-

plemented into existing graph contrastive learning models.

We will demonstrate how the regularization mechanism of

GradGCL effectively addresses the dimensional collapse issue

and enhances the quality of representations with more exper-

iments.

2) Gradients and dimensional collapse issue: In this part,

we will show that the gradient loss can help alleviate the

dimensional collapse issue. To illustrate how gradient loss

works, we consider the case where we use Euclidean distance

as the similarity measurement and linear networks as the

encoders following the previous study [22]. The infoNCE loss

function L is defined as follows:

−
N∑
i=1

log
exp(−|ui − u′

i|2/2)∑
j �=i exp(−|ui − uj |2/2) + exp(−|ui − u′

i|2/2)
,

(20)
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(a) Dim = 80 (b) Dim = 160 (c) Dim = 320 (d) Dim = 640

Fig. 5. The spectrum of Singular value of the representaion space. The representation are obtained from the pre-train SimGRACE model on the IMDB-
BINARY dataset. The sorted singular values are computed from the representaiton covariance matrix shown in logarithmic scale. Dim = 160 means the length
of embedding vector is 160. The gradients increase the rank of representation vectors and alleviate the dimension collapse issue.

where ui = Wxi , u′
i = Wx′

i are the embedding vectors of

the positive data pair xi,x
′
i respectively and xj represents the

negative samples.

We study the dynamics of the gradient flow, which is a

continuous-time limit of gradient descent with an infinitesimal

learning rate.

Lemma 2. Based on the contrastive loss in Eq. 20 defined
previously, the weight matrix in a linear scenario changes as
follows:

Ẇ = −G, (21)

G =
∑
i

(gui
xT
i + gu′

i
x′T
i ), (22)

where gui
and gu′

i
are the gradient of ui and u′

i.

Proof. Take the derivative of the loss Eq. 20 with respect to

the weight matrix based on the chain rule:

dL

dW
=

∑
i

(
∂L

∂ui

∂ui

∂W
+

∂L

∂u′
i

∂u′
i

∂W
)

Based on the linear setting of the network:

∂ui

∂W
= xi,

∂u′
i

∂W
= x′

i,

we obtain:

Ẇ = −(
dL

dW
)T = −

∑
i

(guix
T
i + gu′

i
x′
i
T
).

The gradient gui
and gu′

i
can be obtain based on the infoNCE

loss function with the linear encoder with respect to ui and

u′
i as :

gui
=

∑
j �=i

αij(uj − u′
i) +

∑
j �=i

αji(uj − ui),

gu′
i
=

∑
j �=i

αij(u
′
i − ui),

where αij = exp(−||ui − uj ||2/2)/Zi, αii = exp(−||ui −
u′
i||2/2)/Zi, and Zi =

∑
j �=i exp(−||ui − uj ||2/2) +

exp(−||ui−u′
i||2/2). That is,

∑
j αij = 1. Since ui = Wxi,

we can get:

G = −WX, (23)

where X is the weighted covariance data matrix.

Lemma 3. The rank of G is N under the conditions:
1) For each i = 1, 2, ..., N , the vectors gui

and gu′
i

are
linearly dependent, i.e., there exists a scalar ci such that
gui = cigu′

i
.

2) The vectors gui
+ gu′

i
for i = 1, 2, ..., N are linearly

independent of one another, i.e., they form a basis for a
subspace of dimension N .

Proof. Given the data and its augmentation, the difference

between x′ and x is assumed to be small, such that x′ = x+δx.

Expanding the expression for G:

G =
∑
i

(gui
xT
i + gu′

i
x′T
i )

=
∑
i

(guix
T
i + gu′

i
(x+ δx′)T )

≈
∑
i

(gui
xT
i + gu′

i
xT )

=
∑
i

(gui + gu′
i
)xT

i .

It can be seen that:

∀i, gui

= 0, xi 
= 0 =⇒ rank(gui

xT
i ) = 1.

For any index i, if the vectors gui
and xi are both non-zero,

then the matrix gui
xT
i has rank 1. This is because the column

space of guix
T
i is spanned by gui , which is a non-zero vector.

Therefore, the column space has dimension 1, and the rank of

a matrix is equal to the dimension of its column space.

When gui
and gu′

i
are linearly dependent:

gui
+ gu′

i
= (1 + λ)gui

,

hence Gi = (gui
+ gu′

i
)xT

i remains rank 1. λ is a real number

here.

Moreover, if gui
+ gu′

i
vectors are linearly independent

across all i:

rank(Col{G}) = N,

that is, the column space of G, Col{G}, spanned by Gi, has

rank N .

For our GradGCL, we enforce the similarity among gui for

positive samples and difference for negative samples, i.e.,

gTui
gu′

i
= 1, gTui

guj = 0
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(a) Gradient weight = 0 (b) Gradient weight = 0.5 (c) Gradient weight = 1 (d) Gradient Similarity

Fig. 6. Instance-wise representation and its gradients similarity heatmap with various gradients weights. (a)Weight is 0 means the original model;(b)Weight
is 0.5 means learning with both views of equal contribution; (c)Weight is 1 means the model is trained only using gradients signal. From left to right, the
darker region is less centered indicating the representation similarity is more diverse.

Therefore,

rank(Col{G}) = rank(span{gui
}) = N

the column space Col{G} spanned by {gui} also has rank N .

Given that G = −WX , X is a weighted covariance matrix

and remains fixed, and leveraging the property

rank(AB) ≤ min{rank(A), rank(B)},
it implies rank(Col{W}) = N .

The matrix C can be expressed as:

C =
∑
i

(ui−ū)(ui−ū)T /N =
∑
i

W (xi−x̄)(xi−x̄)TWT /N.

Because rank(Col{W}) = N , C exhibits a high-rank char-

acteristic.

C. Key Observations of GradGCL

1) Representation Quality: To better show the benefit of the

gradients contrastive learning, we evaluate different contrastive

learning methods with the alignment and uniformity [53].

Alignment in Eq. (24) is calculated as the expected distance

of the positive samples:

�align(f ;α) � E
x∼pdata

[‖fθ(x)− fθ(x
′)‖α2 ] , α > 0. (24)

A good contrastive learning should be able to learn the com-

mon information in the positive pairs and lower their distance

in the representation space. However, if all samples are close

in the representation space, mode collapse may happen and

the model can not be robust enough for downstream tasks. To

balance the diversity, another metric, uniformity is proposed:

�uniform(f ;α) � log E

x,y
i.i.d.∼ pdata

[
e−t‖fθ(x)−fθ(y)‖2

2

]
, t > 0.

(25)

It calculates the expected Gaussian potential between pairs. A

small uniformity means the random samples are distributed in

the representation space.

We introduce the technique proposed in Sec. III-B into

SimGRACE, named SimGRACE(g) and train them on MU-

TAG. We plot the scores (Eq. (24) and Eq. (25)) of learned

representations in Fig. 7(a) with every 4 epochs annotated by

numbers. As shown in Fig. 7(a), we can see model trained

with gradients contrastive goal produces better representations,

which indicates the improved representation quality with the

(a) Loss and accuracy curve (b) Uniform Align relation

Fig. 7. Loss and accuracy curve and Uniform Align relation for SimGRACE
and SimGRACE(g), the improved version with our method. Note that it is the
lower, the better for both metrics.

help of gradients. Also, for each epoch we also show the

improvements on the performance by the loss and accuracy

curve in Fig. 7.

2) Alleviating Dimensional Collapse Issues: Contrastive

learning suffers from dimensional collapse, but using gradients

can help alleviate this problem, as shown in Fig. 5. The

representations in the figure are obtained using our method

with the SimGRACE backbone and gradient weights of a ∈
{0, 0.5, 1.0}. The gradients help postpone the drop in singular

values, alleviating the dimensional collapse shown by the

vanishing singular values.

In Fig. 6, the previous model (weight 0) allows the model to

successfully classify the two classes (darker diagonal blocks).

However, the model exaggerates intra-class similarity, leading

to underestimated diversity between classes or different sam-

ples. Improving the model with our method and increasing the

gradient weight leads to more evenly distributed similarity, as

shown in Fig. 7(a). We will further investigate if the improved

representation benefits downstream tasks in our experiments.

IV. EXPERIMENT

We implement GradGCL based on Pytorch framework [39].

All experiments are performed using one single 32GB V100

GPU. And the code of GradGCL and other baselines are

publicly available1.

We empirically show that our GradGCL can be applied

to different GCL models in 3 graph-related tasks, including

graph classification, transfer learning, and node classification.

We generally plug our methods GradGCL and its variant into

previous methods and evaluate the performance following their

1https://github.com/ranlislz/Graph
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TABLE I
DATASETS STATISTICS FOR UNSUPERVISED GRAPH CLASSIFICATION

Datasets Category Graph Num. ClassesAvg. Node Avg. Edges

NCI1 Biochemical 4,110 2 29.87 32.30
PROTEINS Biochemical 1,113 2 39.06 72.82

DD Biochemical 1178 2 284.32 715.66
MUTAG Biochemical 188 2 17.93 19.79
COLLAB Social Networks 5,000 2 74.49 2457.78
IMDB-B Social Networks 1000 2 19.77 96.53
RDT-B Social Networks 2000 2 429.63 497.75

RDT-M5K Social Networks 4,999 5 508.52 594.87
RDT-M12K Social Networks 11,929 11 391.41 456.89

TWITTER-RGPSocial Networks 144,033 2 4.03 4.98

TABLE II
STATISTICS OF DATASETS USED IN OUR EXPERIMENTS.

Datasets Nodes Edges Features Classes

Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
PubMed 19,717 44,338 500 3
WikiCS 11,701 216,123 300 10
Amazon Computer 13,752 245,861 767 10
Amazon Photo 7,650 119,081 745 8
Coauthor CS 18,333 81,894 6,805 15
Coauthor Physics 34,493 247,962 8,415 5
ogbn-Arxiv 169,343 1,166,243 128 40

previous experimental settings in datasets, model architectures

and evaluations. Due to space limits, the data statistics are

summarized in the supplementary material. Note that XXX

represent the raw performance of the baseline XXX (only

activating the left part of Fig. 4, setting a = 0 in Eq. (18)),

XXX(g) represents the gradient alone case of GradGCL with

baseline XXX (discarding the left part of Fig. 4, setting a = 1
in Eq. (18)), mark XXX(f+g) represents full GradGCL with

baseline XXX (whole framework shown in Fig. 4).

A. Graph Classification

Datasets and Experimental Setup: We applied our

method to five previous graph contrastive learning meth-

ods and evaluated its effectiveness in two scenarios: using

gradients alone and combining gradients with feature rep-

resentations on unsupervised graph classification tasks. The

baseline models include data augmentation-based methods

(GraphCL [66], JOAO [65]), encoder perturbation-based meth-

ods (SimGRACE [59]), and feature enhancement-based meth-

ods (InfoGraph [47], MVGRL [13]). We also compared with

kernel methods (WL [45], DGK [63]), other self-supervised

methods like node2vec [11], sub2vec [1], graph2vec [36] and

one most recent work RGCL [31]. We evaluated our methods

on the TUdataset [34] benchmark with social network [42],

[63] and biochemical datasets [9], [40]. Beside the smaller

datasets with thousands of graphs used in the previous models,

we conduct experiment on larger datasets with over hundreds

of thousand of graphs. The performances of unsupervised

graph classification with GCL on larger datasets are less

studied in the previous research. The size of datasets (number

of graphs) ranges from 188 to 144033. The datasets statistics

are shown in Table I.

For unsupervised graph tasks, we trained the new models

with the given datasets to obtain graph representations and

TABLE III
DATASETS STATISTICS FOR TRANSFER LEARNING.

Datasets Category Utilization Graph Num. Avg. Node Avg. Degree

ZINC-2M Molecules Pretrain 2,000,000 26.62 57.72
PPI-306K Protein Pretrain 306,925 39.82 729.62

BBBP Biochemical Finetuning 2,039 24.06 51.90
Tox21 Biochemical Finetuning 7,831 18.57 38.58

ToxCast Biochemical Finetuning 8,576 18.78 38.52
SIDER Biochemical Finetuning 1,427 33.64 70.71
ClinTox Biochemical Finetuning 1,477 26.15 55.76
MUV Biochemical Finetuning 93,087 24.23 52.55
HIV Biochemical Finetuning 41,127 25.51 54.93

BACE Biochemical Finetuning 1,513 34.08 73.71

applied them to downstream classification tasks using an

SVM classifier with 10-fold cross-validation for the smaller

datasets. For larger datasets, we adopt stochastic gradient

descent (SGD) classifier for better efficiency in the evaluation

phase. The results are the average accuracy and standard

deviation for 5 runs. To ensure fairness in comparison, we left

the model architectures and loss types unchanged for each

method and implemented our method to calculate gradients

and the gradient contrastive loss.

Results: The results are shown in Tab. IV. Compared with

classic graph representation learning models, we may first

observe that graph contrastive learning generally achieve better

performance. As for XXX(g) (using gradients alone, i.e., a = 1
in Eq. (18)), we found that the learned representations can

be successfully applied to downstream graph classification

tasks and perform comparably or better than previous graph

contrastive learning models, including MVGRL, InfoGraph,

JOAO, and SimGRACE. When using both gradients and

representations (i.e., XXX(f+g)), it is obvious that GradGCL

can improve the performance of existing methods. The con-

sistent improvements across different model architectures and

datasets demonstrate the effectiveness of the soft separation

strategy and the improved representation quality from using

gradients.

Hyperparameter sensitivity: Generally, the weight of gra-

dients loss is essential. When the weight is 0, the model

degraded to the representation-only case. When the weight is

1, the model only uses gradients to learn helpful information.

As shown in Figure 8, we can see the influence of the different

gradients. Generally, for different models and datasets, the

optimal weight may vary.

B. Node classification

Experiment Setup: This task focuses on the transductive

setting. The model is first trained in an unsupervised manner

and then used to produce the node embeddings. We evaluate

the performance on the different datasets used in previous

research. We evaluate the performance on 4 graph con-

trastive learning models on node classification: GRACE [69],

GCA [70], BGRL [49], MVGRL [13] COSTA [68] and

SGCL [48]. We conduct experiment on both smaller graphs

and larger graphs like ogbn-Arxiv [18] with 169K nodes

and the data statistics are shown in Tab. II. To evaluate the

performance, we adopt the previous protocol [13], [69], [70].
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TABLE IV
THE PERFORMANCE COMPARISON ON THE UNSUPERVISED GRAPH CLASSIFICATION TASK. WE USE THE RESULTS REPORTED IN THEIR PUBLISHED

PAPERS. NOTE THAT “−” MEANS THE RESULTS ARE NOT AVAILABLE OR MISSING IN THE ORIGINAL PAPERS.

Methods NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B RDT-M12K TWITTER-RGP

GL − − − 81.66±2.11 − 77.34±0.18 41.01±0.17 65.87±0.98 − −
WL 80.01±0.50 72.92±0.56 − 80.72±3.00 − 68.82±0.41 46.06±0.21 72.30±3.44 − −

DGK 80.31±0.46 73.30±0.82 − 87.44±2.72 − 78.04±0.39 41.27±0.18 66.96±0.56 − −
node2vec 54.89±1.61 57.49±3.57 − 72.63±10.20 − − − − − −
sub2vec 52.84±1.47 53.03±5.55 − 61.05±15.80 − 71.48±0.41 36.68±0.42 55.26±1.54 − −

graph2vec 73.22±1.81 73.30±2.05 − 83.15±9.25 − 75.78±1.03 47.86±0.26 71.10±0.54 − −
RGCL 78.14±1.08 75.03±0.43 78.86±0.48 87.66±1.01 70.92±0.65 90.34±0.58 56.38±0.40 71.85±0.84 − −

MVGRL − − − 89.70±1.10 − 84.50±0.60 − 74.20±0.70 − 54.94±0.19
MVGRL(g) − − − 89.52±1.22 − 83.08±0.80 − 73.13±0.65 − 54.67±1.1

MVGRL(f+g) − − − 90.59±1.21 − 84.90±0.56 − 74.60±0.74 − 55.53±0.37
InfoGraph 76.20±1.06 74.44±0.31 72.85±1.78 89.01±1.13 70.65±1.13 82.50±1.42 53.46±1.03 73.03±0.87 30.21±1.09 52.78±0.04

InfoGraph(g) 77.00±0.65 75.48±0.30 73.31±0.16 88.46±1.10 70.78±0.93 88.55±1.23 55.63±1.08 71.73±0.61 32.75±1.58 52.77±0.04
InfoGraph(f+g) 77.46±0.44 75.48±0.30 75.86±0.39 89.87±0.90 71.27±0.96 88.55±1.23 55.86±0.95 72.16±0.74 35.60±0.66 52.84±0.09

GraphCL 77.87±0.41 74.39±0.45 78.62±0.40 86.80±1.34 71.36±1.15 89.53±0.84 55.99±0.28 71.14±0.44 32.86±0.24 52.20±0.25
GraphCL(g) 78.36±0.31 74.84±0.52 78.80±0.45 87.15±1.21 71.76±1.02 89.73±0.65 55.73±0.29 70.97±0.51 32.15±0.44 51.74±0.75

GraphCL(f+g) 78.56±0.56 75.68±0.35 79.37±0.61 89.31±1.42 72.23±1.21 90.50±0.71 56.24±0.19 72.26±0.61 32.98±0.45 52.28±0.23
JOAO 78.07±0.47 74.55±0.41 77.32±0.54 87.35±1.02 69.50±0.36 85.29±1.35 55.74±0.63 70.21±3.08 25.01±0.76 51.09±0.29

JOAO(g) 78.07±0.46 74.58±0.52 78.95±0.47 88.46±0.98 70.23±0.34 88.20±1.51 56.20±0.31 70.23±1.21 26.13± 0.46 51.62±0.51
JOAO(f+g) 79.72±0.53 74.89±0.39 78.95±0.47 88.46±0.98 72.96±0.34 90.45±1.06 56.20±0.31 72.10±1.07 28.81±0.75 51.62±0.51
SimGRACE 79.12±0.44 75.35±0.09 77.44±1.11 89.01±1.31 71.72±0.82 89.51±0.89 55.91±0.34 71.30±0.77 26.19±0.89 50.73±0.30

SimGRACE(g) 78.94±0.45 74.62±0.58 77.88±1.20 89.03±1.80 68.80±0.73 89.82±0.97 55.97±0.25 71.30±0.86 31.15± 0.44 51.68±0.24
SimGRACE(f+g) 80.16±0.40 75.56±0.47 78.41±0.76 89.92±1.75 72.86±0.73 89.82±0.97 56.21±0.30 72.78±0.90 31.15± 0.44 51.68±0.24

(a) DD (b) TWITTER-RGP (c) RDT-B (d) RDT-M12k

Fig. 8. Performance versus gradients loss weight (a) in graph classification tasks. The name (e.g. DD) is for the different datasets and the backbone models
are GraphCL for (a) and (c), SimGRACE for (b) and JOAO for (d). The baseline in yellow dash line stand for the original model. The overall improvements
in the accuracy with various gradients weight prove the effectiveness of our methods.

A linear classifier is trained and the results are reported by the

mean accuracy and standard deviation on test node set.

Results: We follow the original settings of BGRL, GRACE,

MVGRL, and COSTA, thus presenting two tables Tab. V

and Tab. VII for the performance comparison. For BGRL,

the improved model outperforms the original one shown in

Tab. V. In Tab. VII for GRACE and MVGRL, we can see

in the performance on the node classification improved on the

three benchmark datasets except for the PubMed with GRACE

model. However, the improvement on node classification tasks

is less significant compared with that on the graph classi-

fication tasks. Node classification aims to make predictions

at the node level, rather than the graph level. Unlike graph

classification tasks, nodes are not independent of each other.

The gradients may not capture much of this interdependent

information because they are computed on an individual

instance without aggregating neighborhood gradients.

Hyperparameter sensitivity: In Figure 9, when increasing

the gradients weight, the performance curve first goes up

and then drops with large gradients. The improvement is

less significant compared with that on graph classification

task. This corresponds to the definition of gradients without

aggregating the neighborhood gradients and thus can not fully

(a) CiteSeer (b) Cora

Fig. 9. Performance versus gradients loss weight (a) in Node classification
tasks with GRACE backbone on CiteSeer dataset and MVGRL backbone on
Cora dataset. The baseline in yellow dash line stand for the original model.
The overall improvements in the accuracy with various gradients weight prove
the effectiveness of our methods.

represent the node information.

C. Transfer learning

The performance improvement is significant in the unsuper-

vised graph classification tasks. We further show the whether

the improved representation can benefit the transfer-ability.

Experiment setup: Transfer learning includes two phases.

The model is first pre-trained on a large datasets and then fine-

tuned on the downstream tasks. To evaluate the robustness of
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TABLE V
THE PERFORMANCE COMPARISON ON THE NODE CLASSIFICATION TASK WITH IMPROVED BGRL AND SGCL MODEL. THE RESULTS OF OTHER MODELS

ARE REPORTED IN THEIR PAPER.

Methods WikiCS Am. Comp. Am. Photos Co.CS Co.Phy ogbn-Arxiv

Raw features 71.98 ± 0.00 73.81 ± 0.00 78.53 ± 0.00 90.37 ± 0.00 93.58 ± 0.00 -
deepwalk 74.35 ± 0.06 85.68 ± 0.06 89.44 ± 0.11 84.61 ± 0.22 91.77 ± 0.15 -

deepwalk + feat. 77.21 ± 0.03 86.28 ± 0.07 90.05 ± 0.08 87.70 ± 0.04 94.90 ± 0.09 -
Supervised GCN 77.19 ± 0.12 86.51 ± 0.54 92.42 ± 0.22 93.03 ± 0.31 95.65 ± 0.16 71.74 ± 0.29

DGI 75.35 ± 0.14 83.95 ± 0.47 91.61 ± 0.22 92.15 ± 0.63 94.51 ± 0.52 65.10 ± 0.40
GCA 78.35 ± 0.05 88.94 ± 0.15 92.53 ± 0.16 93.10 ± 0.01 95.73 ± 0.03 68.20 ± 0.20

BGRL 79.98 ± 0.10 90.34 ± 0.19 93.17 ± 0.30 93.31 ± 0.13 95.73 ± 0.05 71.75 ± 0.17
BGRL(f+g) 80.83 ± 0.13 89.79 ± 0.22 93.32 ± 0.27 93.33 ± 0.12 95.96 ± 0.10 -

SGCL 79.83 ± 0.54 90.46 ± 0.31 93.44 ±0.28 93.29 ± 0.17 95.78 ± 0.11 70.75 ± 0.10
SGCL(f+g) 79.93 ± 0.50 90.56 ± 0.32 93.47 ±0.32 93.32 ± 0.18 95.79 ± 0.08 70.89 ± 0.06

TABLE VI
THE PERFORMANCE COMPARISON ON THE TRANSFER LEARNING TASK. THE RESULTS OF OTHERS ARE REPORTED FROM THEIR PUBLISHED REPORTS.

Pre-train dataset PPI-306K ZINC2M
Avg.

Fine-tune dataset PPI BBBP ToxCast SIDER BACE ClinTox MUV Tox21 HIV

No Pre-Train 64.8 74.0 63.4 57.3 70.1 58.0 71.8 65.8 75.3 66.76
AttrMasking 65.2 76.7 64.2 61.0 79.3 71.8 74.7 64.3 77.2 70.44
ContextPred 64.4 75.7 63.9 60.9 79.6 65.9 75.8 68.0 77.3 70.18
SimGRACE 70.25 71.25 63.36 60.59 75.00 75.60 76.90 75.60 75.20 71.52

SimGRACE(f+g) 70.77 71.08 62.92 61.12 75.96 75.90 76.21 75.65 75.36 71.66
GraphCL 67.88 68.00 63.09 60.09 75.38 75.99 69.80 73.87 78.47 70.28

GraphCL(f+g) 69.57 70.05 62.84 59.01 76.6 75.11 75.20 75.58 77.75 71.30

our methods, we conduct experiments for both proteins func-

tion for biology domain and molecular property predication

with chemical datasets as [19], [59], [66] did.

Datasets: The datasets statistics are listed in Table III.

Moreover,we pretrain the model on PPI-306K datasets [71] for

protein function prediction and on ZINC15 [46] for molecule

property prediction. And the model is then finetuned on

the PPI datasets and MoleculeNet [58] respectively. PPI-

306K represents protein-protein interaction network and is

used for protein function prediction. ZINC15 are molecules

sample dataset. For pre-training, 2 million molecule samples

without labels are used. We select 3 benchmark datasets in

MoleculeNet for finetuning as [59].

Baselines: We show the transferability of gradient con-

trastive learning on two previous contrastive learning model

GraphCL [66] and SimGRACE [59].

Evaluation: Experiments results for each datasets are re-

ported by mean and standard deviation of ROC-AUC scores

after 10 times running as [66]. We use the same GIN as the

GNN encoder with the original models introduced in [19].

Results: From Tab. VI, we can see our methods improve

the average performance on the transfer learning tasks of

previous methods. For the PPI dataset, the improvement is

significant for both models. It demonstrates that the model

trained by contrasting with gradients improved the robustness

and transferability of contrastive learning models. However,

for the performance that transferred from ZINC2M, there

is not a universally beneficial strategy for transfer learning

task, which is consistent with the observations in previous

articles [59], [66].

Hyperparameter sensitivity: Shown by the results in

Fig. 10 reported from the PPI and BACE datasets, a larger

gradient weight usually brings the improved transferability.

The trend of performance is first increase then drops but the

TABLE VII
THE PERFORMANCE COMPARISON WITH OTHER BASELINES ON THE NODE

CLASSIFICATION TASK. THE RESULTS OF MVGRL ARE FROM PREVIOUS

PUBLISHED PAPERS. FOR GRACE, THE RESULTS ARE PRODUCED BY

RUNNING THEIR PUBLISHED CODE.

Methods Cora CiteSeer PubMed

GRACE 82.86 ± 0.55 71.53 ± 0.77 86.70± 0.10
GRACE(f+g) 83.08 ± 0.70 71.92 ± 0.57 86.21 ± 0.13

MVGRL 83.5 ± 0.40 73.30 ± 0.50 80.10 ± 0.70
MVGRL(f+g) 84.03 ± 0.45 73.39 ± 0.60 80.04 ± 0.35

COSTA 84.3±0.2 72.90±0.30 86.0±0.20
COSTA(f+g) 85.01±0.30 73.05±0.13 85.75±0.18

sweet zone relatively large. This shows that gradients generally

improve the tranfer learning of previous methods.

D. Hyperparameter sensitivity

Weight of Gradients Loss a. Generally, the weight of

gradients loss is essential. When the weight is 0, the model

degrades to the representation-only case When the weight is

1, the model only uses gradients to learn helpful information

Generally, for different models and datasets, the optimal

weight may vary. As shown in Fig. 10 reported from the

PPI dataset, a larger gradient weight usually brings improved

transferability. The trend of performance is first increasing

and then dropping but the sweet zone is relatively large. This

shows that gradients generally improved the tranfer learning

of previous methods. In Fig. 9, when increasing the gradients

weight, the performance curve first goes up and then drops

with large gradients. The improvement is less significant

compared with that on the graph classification task. This

corresponds to the definition of gradients without aggregating

the neighborhood gradients and thus can not fully represent

the node information.
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(a) PPI (b) BACE
Fig. 10. Performance versus gradients loss weight (a) in Transfer learning
tasks with SimGRACE backbone on PPI dataset and GraphCl model on BACE
datasets. The overall improvements in the accuracy with various gradients
weight prove the effectiveness of our methods.

TABLE VIII
COMPARISON OF EFFICIENCY OF DIFFERENT BACKBONE MODELS ON

VARIOUS DATASETS.

Dataset Model Training Time(s)

DD
InfoGraph 439

InfoGraph(f+g) 445

PROTEINS
GraphCL 31

GraphCL(f+g) 33

IMDB
JOAO 45

JOAO(f+g) 46

RDT-B
SimGRACE 86

SimGRACE(f+g) 91

E. Efficiency (Training time)

In Table VIII, we show the training time comparison with

various backbone model on different datasets with the same

epochs. The gradient loss will introduce extra computation and

increase the training time by 2% - 6%.

F. Ablation study

We first show that gradients alone can maximize the mutual

information in Tab. IV with XXX(g). Shown by XXX(f+g),

when combined with representations, the performance further

improves. Further, since ours can improve the representation

quality by alignment and uniformity, in Fig. 12(b), we compare

the performance of using alignment loss directly in [53]

as ablation studies. Alignment loss improve performance of

SimGRACE but ours is better since we provide extra graph

data information. Besides, we also show the results of different

augmenters from different models, ours can improve the

performance for different augmentation techniques. Moreover,

we compared the performance of various augmentations tech-

niques in Fig. 12(a). GradGCL can successfully work across

the augmenters. For different loss function like InfoNCE,

JSD [13], SCE [17], we show the result for various loss types

since the gradients are calculated based on the different loss

functions. InfoNCE loss can be used to estimate the mutual

information, however SCE loss can not. We use GraphCL

with infoNCE loss, MVGRL with JSD loss, GraphMAE with

SCE loss and train them on the IMDB-BINARY dataset in

unsupervised graph classification tasks. As shown in Fig. 11,

our GradGCL works for contrastive loss like NCE loss but

failed on SCE loss, which is from GraphMAE, a generative

self-supervised learning without contrastive loss. Incorporating

gradient weight degrades the model performance.

(a) InfoNCE (b) SCE
Fig. 11. Results of unsupervised graph classification tasks with different
weights on gradient contrastive learning on IMDB-BNARY datasets for
different loss type: infoNCE, and SCE. The yellow dash line represents the
original model as the baseline. Since SCE are reconstruction loss rather than
contrastive loss, our methods fail to improve the performance.

(a) Ablation:augmentor (b) Ablation:alignment loss

Fig. 12. Ablation study on (a) Different augmenters: Node for node dropping,
Subgraph for subgraph sampling with GraphCL and Encoder for encoder
perturbation with SimGRACE on IMDB datasets. (b) The comparison with
alignment loss (Align) with ours(GradGCL) and the original methods.

V. CONCLUSION

Previous GCL methods often suffer from the dimensional

collapse issue, which leads to less informative representations.

We found this problem came from the strong assumption

that all positive samples should be close and all negative

samples should be far apart in the representation space. In

this paper, we propose using gradients in GCL to mitigate the

dimensional collapse and improve graph representation quality.

Our method, gradient contrastive learning (GradGCL), can

be used alone or in combination with existing GCL models.

Through experiments on various loss types, datasets, and

model architectures for different graph tasks, we demonstrate

that using gradients alone can perform similarly to previous

GCL methods and combining GradGCL with current GCL

models leads to improvements in most cases.
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Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires,
Zhaohan Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your own
latent-a new approach to self-supervised learning. Advances in neural
information processing systems, 33:21271–21284, 2020.

[11] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning
for networks. In Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 855–864,
2016.

[12] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction
by learning an invariant mapping. In 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06),
volume 2, pages 1735–1742. IEEE, 2006.

[13] Kaveh Hassani and Amir Hosein Khas Ahmadi. Contrastive multi-view
representation learning on graphs. ArXiv, abs/2006.05582, 2020.

[14] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and
Ross Girshick. Masked autoencoders are scalable vision learners. In
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 16000–16009, 2022.

[15] Robert Hecht-Nielsen. Theory of the backpropagation neural network.
In Neural networks for perception, pages 65–93. Elsevier, 1992.

[16] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Gre-
wal, Phil Bachman, Adam Trischler, and Yoshua Bengio. Learning deep
representations by mutual information estimation and maximization.
arXiv preprint arXiv:1808.06670, 2018.

[17] Zhenyu Hou, Xiao Liu, Yuxiao Dong, Chunjie Wang, Jie Tang, et al.
Graphmae: Self-supervised masked graph autoencoders. arXiv preprint
arXiv:2205.10803, 2022.

[18] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu
Ren, Bowen Liu, Michele Catasta, and Jure Leskovec. Open graph
benchmark: Datasets for machine learning on graphs. Advances in neural
information processing systems, 33:22118–22133, 2020.

[19] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang,
Vijay Pande, and Jure Leskovec. Strategies for pre-training graph neural
networks. arXiv preprint arXiv:1905.12265, 2019.

[20] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou
Sun. Gpt-gnn: Generative pre-training of graph neural networks. In
Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 1857–1867, 2020.

[21] Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, De-
bapriya Banerjee, and Fillia Makedon. A survey on contrastive self-
supervised learning. Technologies, 9(1):2, 2020.

[22] Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understand-
ing dimensional collapse in contrastive self-supervised learning. arXiv
preprint arXiv:2110.09348, 2021.

[23] Krishnateja Killamsetty, Sivasubramanian Durga, Ganesh Ramakrishnan,
Abir De, and Rishabh Iyer. Grad-match: Gradient matching based data
subset selection for efficient deep model training. In International
Conference on Machine Learning, pages 5464–5474. PMLR, 2021.

[24] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[25] Thomas N Kipf and Max Welling. Variational graph auto-encoders.
arXiv preprint arXiv:1611.07308, 2016.

[26] Gukyeong Kwon, Mohit Prabhushankar, Dogancan Temel, and Ghassan
AlRegib. Backpropagated gradient representations for anomaly detec-
tion. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XXI 16, pages
206–226. Springer, 2020.

[27] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
nature, 521(7553):436–444, 2015.

[28] Haoyang Li, Shimin Di, and Lei Chen. Revisiting injective attacks on
recommender systems. In Advances in Neural Information Processing
Systems 35: NeurIPS 2022, New Orleans, LA, USA, November 28 -
December 9, 2022, 2022.

[29] Haoyang Li, Shimin Di, Zijian Li, Lei Chen, and Jiannong Cao. Black-
box adversarial attack and defense on graph neural networks. In 38th
IEEE International Conference on Data Engineering, ICDE 2022, Kuala
Lumpur, Malaysia, May 9-12, 2022, pages 1017–1030. IEEE, 2022.

[30] Ling Li, Siqiang Luo, Yuhai Zhao, Caihua Shan, Zhengkui Wang, and
Lu Qin. Coclep: Contrastive learning-based semi-supervised community
search. IEEE 39th ICDE, 2023.

[31] Sihang Li, Xiang Wang, An zhang, Yingxin Wu, Xiangnan He, and Tat-
Seng Chua. Let invariant rationale discovery inspire graph contrastive
learning, 2022.

[32] Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng, Feng Xia,
and S Yu Philip. Graph self-supervised learning: A survey. IEEE
Transactions on Knowledge and Data Engineering, 35(6):5879–5900,
2022.

[33] Xiao Luo, Wei Ju, Meng Qu, Chong Chen, Minghua Deng, Xian-
Sheng Hua, and Ming Zhang. Dualgraph: Improving semi-supervised
graph classification via dual contrastive learning. In 2022 IEEE 38th
International Conference on Data Engineering (ICDE), pages 699–712.
IEEE, 2022.

[34] Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Pe-
tra Mutzel, and Marion Neumann. Tudataset: A collection of benchmark
datasets for learning with graphs. arXiv preprint arXiv:2007.08663,
2020.

[35] Fangzhou Mu, Yingyu Liang, and Yin Li. Gradients as features for deep
representation learning. arXiv preprint arXiv:2004.05529, 2020.

[36] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkate-
san, Lihui Chen, Yang Liu, and Shantanu Jaiswal. graph2vec: Learning
distributed representations of graphs. arXiv preprint arXiv:1707.05005,
2017.

[37] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learn-
ing with contrastive predictive coding. arXiv preprint arXiv:1807.03748,
2018.

[38] Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and
Chengqi Zhang. Adversarially regularized graph autoencoder for graph
embedding. arXiv preprint arXiv:1802.04407, 2018.

[39] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32,
2019.

[40] Kaspar Riesen and Horst Bunke. Iam graph database repository for
graph based pattern recognition and machine learning. In Joint IAPR
International Workshops on Statistical Techniques in Pattern Recogni-
tion (SPR) and Structural and Syntactic Pattern Recognition (SSPR),
pages 287–297. Springer, 2008.

1183

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 15,2024 at 07:03:51 UTC from IEEE Xplore.  Restrictions apply. 



[41] Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing
Huang, and Junzhou Huang. Self-supervised graph transformer on
large-scale molecular data. Advances in Neural Information Processing
Systems, 33:12559–12571, 2020.

[42] Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. An api oriented
open-source python framework for unsupervised learning on graphs.
arXiv preprint arXiv:2003.04819, 10(3340531.3412757), 2020.

[43] Sebastian Ruder. An overview of gradient descent optimization algo-
rithms. arXiv preprint arXiv:1609.04747, 2016.

[44] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakr-
ishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual
explanations from deep networks via gradient-based localization. In
Proceedings of the IEEE international conference on computer vision,
pages 618–626, 2017.

[45] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt
Mehlhorn, and Karsten M Borgwardt. Weisfeiler-lehman graph kernels.
Journal of Machine Learning Research, 12(9), 2011.

[46] Teague Sterling and John J Irwin. Zinc 15–ligand discovery for
everyone. Journal of chemical information and modeling, 55(11):2324–
2337, 2015.

[47] Fan-Yun Sun, Jordan Hoffmann, and Jian Tang. Infograph: Unsupervised
and semi-supervised graph-level representation learning via mutual
information maximization. ArXiv, abs/1908.01000, 2020.

[48] Wangbin Sun, Jintang Li, Liang Chen, Bingzhe Wu, Yatao Bian, and
Zibin Zheng. Rethinking and simplifying bootstrapped graph latents.
arXiv preprint arXiv:2312.02619, 2023.

[49] Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Rémi
Munos, Petar Veličković, and Michal Valko. Bootstrapped representation
learning on graphs. In ICLR 2021 Workshop on Geometrical and
Topological Representation Learning, 2021.

[50] Chun Wang, Shirui Pan, Guodong Long, Xingquan Zhu, and Jing
Jiang. Mgae: Marginalized graph autoencoder for graph clustering.
In Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, pages 889–898, 2017.

[51] Jiayi Wang, Chengliang Chai, Nan Tang, Jiabin Liu, and Guoliang Li.
Coresets over multiple tables for feature-rich and data-efficient machine
learning. Proceedings of the VLDB Endowment, 16(1):64–76, 2022.

[52] Runhui Wang, Yuliang Li, and Jin Wang. Sudowoodo: Contrastive self-
supervised learning for multi-purpose data integration and preparation.
In 2023 IEEE 39th International Conference on Data Engineering
(ICDE), pages 1502–1515. IEEE, 2023.

[53] Tongzhou Wang and Phillip Isola. Understanding contrastive represen-
tation learning through alignment and uniformity on the hypersphere.
In International Conference on Machine Learning, pages 9929–9939.
PMLR, 2020.

[54] Wei Wang, Meihui Zhang, Gang Chen, HV Jagadish, Beng Chin Ooi,
and Kian-Lee Tan. Database meets deep learning: Challenges and
opportunities. ACM Sigmod Record, 45(2):17–22, 2016.

[55] Zhili Wang, Shimin Di, and Lei Chen. Autogel: An automated graph
neural network with explicit link information. In Advances in Neural
Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14,
2021, virtual, pages 24509–24522, 2021.

[56] Zhili Wang, Shimin Di, and Lei Chen. A message passing neural
network space for better capturing data-dependent receptive fields. In
Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, KDD 2023, Long Beach, CA, USA, August
6-10, 2023, pages 2489–2501. ACM, 2023.

[57] Zhili Wang, Shimin Di, Lei Chen, and Xiaofang Zhou. Search to fine-
tune pre-trained graph neural networks for graph-level tasks. arXiv
preprint arXiv:2308.06960, 2023.

[58] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes,
Caleb Geniesse, Aneesh S Pappu, Karl Leswing, and Vijay Pande.
Moleculenet: a benchmark for molecular machine learning. Chemical
science, 9(2):513–530, 2018.

[59] Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z. Li. Sim-
grace: A simple framework for graph contrastive learning without data
augmentation. Proceedings of the ACM Web Conference 2022, 2022.

[60] Xu Xie, Fei Sun, Zhaoyang Liu, Shiwen Wu, Jinyang Gao, Jiandong
Zhang, Bolin Ding, and Bin Cui. Contrastive learning for sequential
recommendation. In 2022 IEEE 38th international conference on data
engineering (ICDE), pages 1259–1273. IEEE, 2022.

[61] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How
powerful are graph neural networks? arXiv preprint arXiv:1810.00826,
2018.

[62] Yiming Xu, Bin Shi, Teng Ma, Bo Dong, Haoyi Zhou, and Qinghua
Zheng. Cldg: Contrastive learning on dynamic graphs. In 2023 IEEE
39th International Conference on Data Engineering (ICDE), pages 696–
707. IEEE, 2023.

[63] Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In
Proceedings of the 21th ACM SIGKDD international conference on
knowledge discovery and data mining, pages 1365–1374, 2015.

[64] Sean Bin Yang, Chenjuan Guo, Jilin Hu, Bin Yang, Jian Tang, and
Christian S Jensen. Temporal path representation learning with weakly-
supervised contrastive curriculum learning. In ICDE, 2022.

[65] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph
contrastive learning automated. In ICML, 2021.

[66] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang
Wang, and Yang Shen. Graph contrastive learning with augmentations.
ArXiv, abs/2010.13902, 2020.

[67] Matthew D Zeiler and Rob Fergus. Visualizing and understanding con-
volutional networks. In Computer Vision–ECCV 2014: 13th European
Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part I 13, pages 818–833. Springer, 2014.

[68] Yifei Zhang, Hao Zhu, Zixing Song, Piotr Koniusz, and Irwin King.
Costa: covariance-preserving feature augmentation for graph contrastive
learning. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 2524–2534, 2022.

[69] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang
Wang. Deep graph contrastive representation learning. arXiv preprint
arXiv:2006.04131, 2020.

[70] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang
Wang. Graph contrastive learning with adaptive. In Proceedings of the
Web Conference 2021, pages 2069–2080, 2021.

[71] Marinka Zitnik, Rok Sosič, Marcus W Feldman, and Jure Leskovec.
Evolution of resilience in protein interactomes across the tree of life.
Proceedings of the National Academy of Sciences, 116(10):4426–4433,
2019.

1184

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 15,2024 at 07:03:51 UTC from IEEE Xplore.  Restrictions apply. 


