
E2GCL: Efficient and Expressive Contrastive
Learning on Graph Neural Networks

Haoyang LI1, Shimin DI1
∗
, Lei CHEN1,2, Xiaofang ZHOU1

1The Hong Kong University of Science and Technology, Hong Kong SAR, China
2The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China

hlicg@cse.ust.hk, sdiaa@connect.ust.hk, leichen@hkust-gz.edu.cn, zxf@cse.ust.hk

Abstract—Recently, graph contrastive learning proposes to
learn node representations from the unlabeled graph to alleviate
the heavy reliance on node labels in graph neural networks
(GNNs). The core idea is to generate diverse positive views
and negative views according to local subgraphs. Then, GNNs
take these views as supervised signals and train the model
by maximizing the similarity between positive view pairs of
each node and minimizing the similarity between positive and
negative views. Regardless of the fruitful progress, existing graph
contrastive learning approaches still suffer from low-efficiency,
insufficient-expressivity, and unpreserved-locality issues. First, they
train GNNs by all nodes, reducing the efficiency due to similar
and redundant nodes. Second, they only use limited operations
(e.g., edge deletion and feature masking) to generate positive
views, thereby restricting their expressivity. Third, they uniformly
delete edges and mask node features and may modify important
edges and features, thereby damaging the important locality
information of nodes. In this paper, we propose an efficient and
expressive contrastive learning framework for GNNs, namely
E2GCL. Specifically, given a limited node budget, we select a
set of representative nodes instead of all nodes to accelerate the
GNNs training. Besides, we use three general operations (edge
deletion, edge addition, and feature perturbation) to generate ex-
pressive and locality-preserved positive views based on edge and
feature importance. Extensive experiments on various real-world
datasets demonstrate the superior effectiveness and efficiency of
our proposed E2GCL.

Index Terms—Graph Neural Network, Contrastive Learning

I. INTRODUCTION

Graph neural networks (GNNs) [1], [2], [3], [4], [5], [6], [7],

which propose to learn node representations by aggregating

information from neighbors, have achieved great success on

various tasks, such as node classification [8], [9], link pre-

diction [10], [11], graph isomorphism [12], [13], subgraph

counting [14], [15], and community search [16], [17]. Never-

theless, existing GNNs are typically built in a semi-supervised

manner, which access limited task-specific labeled nodes for

training [18], [19]. However, GNNs trained on limited labels

may not generalize well on all nodes [20], [21], [22], [23],

[24]. But it is expensive and time-consuming to annotate a

large number of labeled nodes [25], [26], [27]. To alleviate

the scarce label data issue, recent GNN works integrate

contrastive learning [28], [29] to learn node representations

from unlabeled graph data. These node representations can

distinguish node similarities, which can be easily transferred

to downstream tasks [21], [30].

∗Corresponding Author

�

�������� 	�
�

���

���

� ���� ���	
��

���� ���
���� ���
�
��
�
�
���
��

���
�
�� ��
�

���� ���
����

����
� �����

���	��
����	�
�����

�

�������
 	�
� �

�

�������
 	�
� �

���� ���������� �		
�����
�����

�

�
�����
 	�
�

������ �����

�
�����
 ���
� ���

����	 ��

�
�
�
��
�
�
���
��

���

����	

���

����	

	����
�� ��
�

���� ���
����

����
� �����

���	�������	�
�����

Fig. 1: An example of perturbation-based graph contrastive

learning. Taking node v as an example, ĥv and h̃v are

representations of node v learned from two positive views,

ĥu is the representation learned from the negative view.

Generally, contrastive learning approaches generate super-

vised signals from the unlabeled graph and then use these

supervised signals to optimize GNNs. Specifically, they gen-

erate diverse positive views (i.e., different local subgraphs) for

each node v as supervised signals. These positive views are

expected to preserve the important locality information (i.e.,

local edges and node features) of node v in the original graph.

Besides, these contrastive learning approaches randomly sam-

ple nodes from the graph as the negative views for each node v,

expecting that these sampled nodes have different node locality

information with the node v. Then, as illustrated in Fig. 1,

the parameters of GNNs are optimized by maximizing the

representation similarity between positive view pairs of each

node, and minimizing the representation similarity between

positive and negative views. In such a way, the pre-trained

GNNs can distinguish the similarity between nodes.

Based on the techniques that are employed to gener-

ate positive views for each node, current contrastive learn-

ing approaches can be classified into three types, i.e.,

similarity-based [31], [32], [33], diffusion-based [34], [35],

and perturbation-based [36], [20], [25], [37], [24], [38] ap-

proaches. Based on node features and structures, similarity-

based approaches [31], [32], [33] first select nodes in the

original graph that are similar to the target node. Then,

they take the local subgraphs of these similar nodes as the

859

2024 IEEE 40th International Conference on Data Engineering (ICDE)

2375-026X/24/$31.00 ©2024 IEEE
DOI 10.1109/ICDE60146.2024.00071

20
24

 IE
EE

 4
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(IC

DE
) |

 9
79

-8
-3

50
3-

17
15

-2
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DE
60

14
6.

20
24

.0
00

71

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 15,2024 at 06:28:51 UTC from IEEE Xplore. Restrictions apply.

positive views for the target node. Instead of selecting the local

subgraphs of existing nodes, diffusion-based and perturbation-

based approaches generate positive views for the target

node by reconstructing its local subgraph. More specifically,

diffusion-based approaches [34], [35] modify graph structure

(edge deletion/addition) based on the global graph topological

information, such as the personalized PageRank (PPR) [39].

Perturbation-based approaches [36], [20], [25], [37], [24], [38]

make modifications on both structures and features.

Despite the fruitiness of contrastive learning on GNNs, there

still exist three limitations of existing approaches [34], [20],

[25], [24], [38], i.e., low-efficiency, insufficient-expressivity,

and unpreserved-locality issues. First, existing contrastive

learning approaches [34], [20], [25], [24], [38] generate pos-

itive views for all nodes and use all nodes to optimize GNN

parameters. However, since there exist similar nodes in the

graph, it is redundant to use all nodes for training.

Second, there are various graph augmentation operations

that can be utilized to generate positive or negative views [22],

[24], such as edge deletion/addition, node dropping/addition,

feature perturbation/dropping/masking, etc. Intuitively, more

augmentation operations can generate more expressive positive

views. However, as shown in Tab. I, current approaches [34],

[20], [25], [38], [40] only use part of operations for simplicity

purposes, which will hinder the expressiveness of contrastive

learning approaches and thereby decreases their effectiveness.

Third, when generating positive views for a node, exist-

ing approaches take each edge and each feature dimension

equally, and then modify them uniformly [34], [20], [24],

[38]. However, the impact of different edges and features

should be different. Consequently, existing approaches may

remove important edges and node features, and thus deteriorate

the intrinsic locality patterns of the node, thereby damaging

the quality of the learned node representations [25], [41].

As shown in Tab. I, we summarize existing works from

three perspectives: the nodes for training, the expressivity of

generated views, and the locality to be persevered. None of

existing approaches can cover all these aspects.

To address the above low-efficiency, insufficient-expressivity,

and unpreserved-locality issues, a contrastive learning frame-

work is expected to include the following three parts: (1) a
node selector chooses a subset of the most informative nodes

that can fully represent the entire graph. Such a way can

avoid generating views for all nodes to train GNNs, thereby

alleviating the low-efficiency issue. (2) a view generator uses

more augmentation operations, such as all possible opera-

tions, to generate positive views, addressing the insufficient-
expressivity issue. (3) to address the unpreserved-locality issue,

the view generator targets to modify unimportant edges and

perturb unimportant node features to generate positive views

for each selected node. Then, the generated positive views can

maintain the intrinsic local pattern of each node and preserve

the important locality information. Additionally, each pair of

positive views should be diverse, i.e., they have different

unimportant edges and features. Such a way enables the pre-

trained GNN to be invariant to noise [40], [42]. However,

to achieve this framework, we need to address the following

TABLE I: The summary of existing contrastive learning ap-

proaches for GNNs. FP: Feature Perturbation, FM: Feature

Mask, ED: Edge Deletion, EA: Edge Addition, Exp.: Expres-

sivity, LP: Locality-preserved.

Type Model Optimization Positive Views
Train Nodes Efficiency Operation Exp. LP

Similarity
AFGCL [33] All × - × ×
AFGRL [31] All × - × ×

Diffusion
MVGRL [34] All × EA, ED × �
MVGCC [35] All × EA, ED × �

Perturbation

GCC [38] All × ED × ×
GraphCL [24] All × EM, ED × ×
GRACE [20] All × FM, ED × ×
BGRL [36] All × FM, ED × ×

ADGCL [37] All × ED × ×
GCA [25] All × FM,ED × �

E2GCL(Ours) Subset � FP, ED, EA � �

technique challenges.

• There lacks a metric for measuring the representativity

of a subset of nodes towards the other nodes under the

contrastive learning manner, i.e., without labels. Moreover,

given a node budget, the representative node subset should

be selected efficiently regarding the exponential node com-

binations. Otherwise, the saved time from training GNNs

on fewer number of nodes will be totally or even over-

consumed by the node selection process.

• Even though more augmentation operations tend to generate

more expressive positive views, the model complexity will

increase as the number of used operations increases [24],

[22]. Therefore, we should select a minimal subset of

operations from all operations that can generate the same

expressive positive views as all augmentation operations,

thereby reducing model complexity.

• Due to the lack of node labels, it is difficult to measure

the edge and node feature importance to further preserve

the important locality information. Besides, given a set of

augmentation operations, the space of positive views are

exponential. Therefore, we need an efficient algorithm to

generate diverse and locality-preserved positive views.

To address the aforementioned technique challenges, we

propose an Efficient and Expressive Contrastive Learning

framework for GNNs, namely E2GCL, which incorporates

edge and feature importance to generate locality-preserved

positive views. First, under the contrastive learning manner, we

first theoretically analyze the representability of nodes under

the contrastive learning setting, i.e., we cannot access node

labels when pre-training GNNs. Then, we formulate a cluster-

based coreset selection problem to select top-k representative

nodes, and prove that this problem is NP-hard and propose

an efficient sampling-based algorithm with an approximation

guarantee to solve it. In view generator, we select three

augmentation operations (edge deletion, edge addition, and

feature perturbation) and theoretically show that these three

operations are the minimal set of operations required to

generate the same expressive views as all graph augmentation

operations. Third, we formulate a view generation problem

that aims to generate diverse and locality-preserved views for

each node by the three afore selected operations. We prove

860

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 15,2024 at 06:28:51 UTC from IEEE Xplore. Restrictions apply.

that this problem is NP-hard as well and propose an edge and

feature-aware sampling algorithm. Specifically, we measure

the edge and feature importance from node centrality and node

similarity, and then sample important edges and features to

generate positive views. Such a way enables us to generate

locality-preserved and diverse positive views. Overall, our

contributions are summarized as follows.

• We propose an efficient and expressive contrastive learning

framework for GNNs, namely E2GCL. Generally, it con-

sists of two components, i.e., representative node selector

and locality-preserved view generator.

• In node selector, we first theoretically analyze the repre-

sentability of nodes under the contrastive learning setting,

and then formulate a cluster-based coreset selection problem

to select top-k representative nodes. Then, we prove that this

problem is NP-hard and propose a sampling-based greedy

algorithm with an approximation guarantee.

• In view generator, we formulate a view generation problem

that generates expressive, diverse, and locality-preserved

positive views. Then, we prove that this problem is another

NP-hard and propose an efficient sampling algorithm.

• We conduct experiments on various real-world datasets.

Extensive empirical studies demonstrate the superior perfor-

mance and efficiency of E2GCL compared with baselines.

II. PRELIMINARY AND RELATED WORKS

In this section, we introduce graph neural networks (GNNs)

and contrastive learning on GNNs. Formally, G(V,A,X) de-

notes a graph, where V , A ∈ {0, 1}|V |×|V |, X ∈ {0, 1}|V |×dx ,

denote nodes, adjacency matrix, and node features, respec-

tively. Nv = {u : A[u][v] = 1} is the neighbors of v.

A. Graph Neural Network

Current researchers [43], [44], [45], [46], [47], [48], [49]

propose to learn a low dimensional representations for nodes to

facilitate the downstream task. One representative approach is

GNNs. Specifically, given graph structure A and node features

X of a graph G as inputs, the encoder GNNs fθ [1], [17], [50],

[51], [52], [53], [54], [55] propose to learn low dimensional

representation H ∈ R
|V |×dh for nodes V by recursively

aggregating information from their neighbors. Taking the

representative Graph Convolutional Network (GCN) [18] as an

example, the l+1-th node representations Hl+1 ∈ R
|V |×dl+1

can be computed as:

Hl+1 = σ(AnH
lWl), (1)

where σ denotes a non-linear function (e.g., ReLU [56]),

Hl ∈ R
|V |×dl and Wl ∈ R

dl×dl+1 denotes node repre-

sentations and parameters in the l-th layer, respectively. An

is a normalized adjacency matrix [18]. Initially, H0 = X.

θ = {W0, · · · ,WL} denotes the parameters of GNN. For

simplicity, given a GNN model fθ and a graph G, we use

H = fθ(G) to denote the node representations of V learned on

G. Similarly, hv = fθ(Gv) denotes v’s representation learned

from its L-hop local subgraph Gv(Vv,Av,Xv).
Then, the node representation H can be used for various

downstream tasks, such as node classification, link prediction,

TABLE II: Summary on important notations.

Symbols Meanings

G(V,A,X) The graph G
An The normalized adjacency matrix of A

N l
v, Nv The l-hop and 1-hop neighbors of node v

Dv, D̄ Degree of node v, the average node degree
hv,H The representation of v and all nodes
R, rv Raw aggregated information from neighbors
lnc, lcl Node classification loss, and contrastive loss
fθ, qϕ The encoder GNN fθ and simple decoder qϕ
k Node budget for selecting a coreset
Ci,CVs,i Cluster i, nodes in Vs belonging to cluster i
nc, ns Cluster number and sampled node number
RS(Vs) Representativity score of selected nodes Vs

ϕc(v) Node centrality of node v
we

v,u The edge score between node v and u

wf
xv [i]

The i-th dimension feature score of v

and graph classification. Specifically, a simple decoder (e.g.,

l2 linear regression) qϕ takes H as inputs to prediction node

class, link probability, and graph class. In general, given

labeled training data TDtask = {Gtask, LDtask,Ytask}, the

GNN fθ and the decoder qϕ can be optimized by minimizing

task training loss ltask(·) as follows.

ϕ∗, θ∗ = argmin
ϕ,θ

ltask(qϕ, fθ, TDtask) (2)

We introduce how to apply Eq. (2) to downstream tasks.

• Node classification: TDtask is {G, Vla,YN}, where Vla ⊂
V with labels YN ∈ {0, 1}|Vla|×|Y| denotes labeled training

nodes. qϕ takes H to predict label score S for nodes V , i.e.,

S = qϕ(H) ∈ [0, 1]|V |×|Y|. The task loss [18], [57] can be

defined as lnc(qϕ, fθ, TDtask) = −∑
v∈Vla

lnS[v][yv].
• Link prediction: TDtask is {G,E,YE}, where E contains

node pairs and YE ∈ {0, 1}|E| denotes whether there is an

edge between (v, u) ∈ E. The decoder qϕ(·) can predict

the probability that there is an edge between v and u based

on hv and hu, i.e., pv,u = qϕ([hv,hu]) ∈ [0, 1]. The task

loss [58], [59] can be defined as llp(qϕ, fθ, TDtask) =
−∑

(v,u)∈E (ln pv,u +
∑

u′∈Negv
ln(1− pv,u′)), where

Negv is negative samples of v.

• Graph classification: TDtask is {{Gi}ni=1, {Gi}ni=1,YG},

where a set of graph {Gi}ni=1 are labeled by YG ∈
{0, 1}n×|Y|. The representation zi of entire graph Gi can be

summarized on the node representation Hi by a READOUT
function [34], i.e., zi = READOUT(Hi). One example

of READOUT is SUM function, i.e., zi =
∑

v∈Vi
Hi[v].

Then, the decoder qϕ(·) can predict class score of each

graph Gi based zi, i.e., si = qϕ(zi) ∈ [0, 1]|Y|. The task

loss [34], [60] can be defined as lgc(qϕ, fθ, TDtask) =
−∑n

i=1 ln si[yi].

Also, researchers propose variants of GCN to improve its ef-

ficiency [61], [62], [63], [64], [65], [66] and effectiveness [19],

[67], [68], [69], [70] by sampling its neighbors, learning

weight for edges, and automatically searching architecture.

861

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 15,2024 at 06:28:51 UTC from IEEE Xplore. Restrictions apply.

B. Graph Contrastive Learning

In real-world applications, it is hard to annotate enough

labels Ytask in Eq. (2) to train a generalizable GNN model.

Recent GNN works integrate contrastive learning [21], [28],

[29], [71], [72], [73] to learn high-quality node representations

from unlabeled graph data, which can be easily transferred

to downstream tasks [21], [30], [74]. Alg. 1 illustrates the

framework of contrastive learning.

1) Pre-train Node Representations with Contrastive Learn-
ing: Generally, graph contrastive learning (GCL) approaches

generate different local subgraphs (e.g., Ĝv and G̃v) as the

positive views for each node v. These positive views are

expected to preserve the important locality information of the

node v in the origin local graph Gv . In another word, the

representation ĥv (resp. h̃v) learned from Ĝv (resp. G̃v) is

similar to hv learned from Gv . Similarly, existing approaches

sample a set of nodes Negv from the graph as negative

views for each node v, assuming that these sampled nodes

are dissimilar to v. Then, the GNN fθ are optimized by

the contrastive loss lcl(·) in Eq. (3), which maximizes the

similarity between each positive view pair (Ĝv and G̃v), and

minimizes the similarity between positive views (Ĝv and G̃v)

and negative views (Negv):

θ∗ = argmin
θ

1

|V |
∑
v∈V

lcl(fθ, Ĝv, G̃v, Negv) (3)

s.t. G̃v, Ĝv = arg min
G̃v,Ĝv

lvg(G, v, T), ∀v ∈ V, (4)

where lcl(·) is the constrastive loss, lvg(·) is the view gener-

ation loss on positive view pair, T is a set of augmentation

operations to generate views. One typical lcl(·) can be defined

based on euclidean distance as follows:

‖ĥv − h̃v‖22 −
1

2|Negv|
∑

h′
v∈{h̃v,ĥv}

∑
u∈Negv

‖h′
v − hu‖22. (5)

Therefore, minimizing lcl(·) is to maximize the similarity

between positive views (h̃v, ĥv) and minimize the similarity

between positive views with negative views (hu ∈ Negv). The

contrastive learning process is shown in line 1-5 in Alg. 1.

Existing contrastive learning approaches mainly differ in

positive view generation in Eq. (4), especially their customized

lvg(·) and T . Based on their technique, current contrastive

learning approaches can be classified into three types. First,

similarity-based approaches [31], [27], [32], [33], [41], [76] do

not use graph augmentation operations, i.e., T = ∅. Several

researchers [31], [32], [33], [76] select each neighbor u ∈ Nv

of node v or the node u ∈ V whose features are similar to

v and take the local subgraph Gu as node v’s positive view.

Also, recent researchers [27], [41] propose to add small noise

ε on the learned node representation hv as the learned positive

representations ĥv , i.e., ĥv = hv + ε. Second, based on PPR

technique [39], [77], [78] and Gaussian kernel [79], diffusion-

based approaches [34], [35] take edge addition and deletion

to modify the local subgraph Gv to generate positive views

Ĝv and G̃v , respectively. In addition to structure modification,

perturbation-based approaches [36], [20], [25], [37], [24], [38]

Algorithm 1: GCL framework with downstream task

Input: Graph TDtask = {Gtask, LDtask,Ytask}, the
encoder GNN fθ , the decoder qϕ, epoch number T

Output: The encoder fθ∗ and the decoder qϕ∗
// GCL without labels

1 for i = 1 to T do
2 for each G(V,A,X) ∈ Gtask do
3 for v ∈ V do
4 G̃v, Ĝv = argminG̃v,Ĝv

lvg(G, v, T)

5 θ∗ = argminθ
1

|V |
∑

v∈V lcl(fθ, Ĝv, G̃v, Negv)

// Decoder training with labels
6 ϕ∗ = argminϕ ltask(qϕ, fθ∗ , TDtask)
7 Return the trained encoder fθ∗ and the decoder qϕ∗

uniformly mask node features in local graph Gv . In particular,

recent researchers [72], [80] propose to use various pretext

task, such as predicting the shortest path between nodes, to

learn general node representations.

2) Fine-tune Node Representations on Downstream Tasks:
Then, the GNN fθ∗ pre-trained in the contrastive manner can

be used in node classification, link prediction and graph classi-

fication tasks. As shown in line 6 in Alg. 1 and Sec. II-A, given

limited labeled training data TDtask = {Gtask, Dtask,Ytask}
and the fixed GNN fθ∗ , the decoder qϕ can be optimized by

minimizing task training loss ltask(·) as follows.

ϕ∗ = argmin
ϕ

ltask(qϕ, fθ∗ , TDtask) (6)

Then, the generalizable node representations learned from

unlabeled graphs are fine-tuned to facilitate downstream tasks.

C. Coreset Selection

Consider a task with model Mθ where parameters θ ∈ Θ, a

training dataset TD = {(xi,yi)}ni=1 where features xi ∈ R
dx

and label yi ∈ {0, 1}|Y |, and a loss function l(θ,xi,yi),
the model Mθ can be optimized by minimizing the loss on

training data TD as θ∗ = argminθ∈Θ
1
n

∑n
i=1 l(θ,xi,yi).

Recently, the parameters θ can be optimized by stochas-

tic gradient decent (SGD) approach, i.e, θ = θ − α ·
1
n

∑n
i=1 ∇θl(θ,xi,yi) where α is a learning rate.

However, it is time-consuming to optimize the model on

large training datasets. Recent researchers observe that similar

data instances exist in the training data [81], [82], [83], [84].

Therefore, they propose to select a subset of nodes (i.e.,

coreset) with size k from all the training data and train the

model on the coreset [85], [86], [87], [88], [82], [83], [84].

Existing effective coreset selection approaches utilize gradient

approximation approaches [85], [87], [82], [89]. They expect

the gradients on all training data TD and on the coreset

S ⊆ TD to be as similar as possible, which can be defined

as follows.

min
S

max
θ∈Θ

‖
n∑

i=1

∇θl(θ,xi,yi)−
|S|∑
j=1

λj∇θl(θ,xj ,yj)‖ (7)

s.t. |S| ≤ k,

|S|∑
j=1

λj = |TD|, and λj ∈ N, ∀j ∈ {1, · · · , |S|}

862

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 15,2024 at 06:28:51 UTC from IEEE Xplore. Restrictions apply.

where λj ∈ N is the weight of instance (xj ,yj), which is

the number of nodes that it can represent. Since more similar

gradients can achieve similar optimized parameters, thereby

coreset approaches can perform similar on test data.

Nevertheless, existing coreset selection approaches [5], [85],

[86], [87], [88], [82], [83], [84], [89] are not suitable for con-

trastive learning. They need labels for instances, while there

are no instance labels in contrastive learning as introduced in

Sec. II-B1 and Alg. 1 (lines 1-5). As a result, none of the

existing approaches analyze how to extend Eq. (7) to select a

coreset under graph contrastive learning setting.

III. NODE SELECTOR

As introduced in Sec. II-B, existing GCL models utilize all

nodes to pre-train GNNs, restricting the efficiency due to the

redundant nodes in the graph. In this section, we first theo-

retically analyze the gradient approximation of the coreset for

GCL and formulate a cluster-based coreset selection problem.

Then, we prove that this problem is NP-hard and propose an

efficient algorithm with theoretical guarantee.

A. Theoretical Analysis

Based on Eq. (3), we first transform the coreset selection

problem of supervised learning in Eq. (7) to graph contrastive

learning. Formally, given a graph G(V,A,X), node budget k,

GNNs model fθ with parameters θ ∈ Θ, and contrastive loss

lcl(·), the target is to select a coreset Vs ⊆ V by minimizing

the follows.

min
Vs∈V

max
θ∈Θ

‖
∑

v∈V

∇θlcl(θ, ĥv , h̃v)−
∑

u∈Vs

λu∇θlcl(θ, ĥu, h̃u)‖ (8)

s.t. |Vs| ≤ k,
∑

u∈Vs

λu = |V |, and λu ∈ N, ∀u ∈ Vs

However, it is infeasible to directly solve the optimization

problem. It is because it requires us to calculate the gradient

of the loss function over each parameter θ ∈ Θ, which is

too expensive. Therefore, following [85], we propose how to

quickly measure the gradient difference between all training

nodes V and the selected coreset Vs . Specifically, we define

a mapping function γ : V → Vs in that the node v ∈ V are

represented by the selected node u ∈ Vs. Then, for arbitrary

parameters θ ∈ Θ, we can get the following inequality based

on triangle inequality.

‖
∑
v∈V

∇θlcl(θ, ĥv, h̃v)−
∑
u∈Vs

λu∇θlcl(θ, ĥu, h̃u)‖ (9)

≤ ‖
∑
v∈V

(∇θlcl(θ, ĥv, h̃v)−∇θlcl(θ, ĥγ(v), h̃γ(v)))‖

≤
∑
v∈V

‖∇θlcl(θ, ĥv, h̃v)−∇θlcl(θ, ĥγ(v), h̃γ(v))‖

The upper bound of Eq. (9) is minimized when each node

v ∈ V is assigned to the node u ∈ Vs with the most gradi-

ent similarity, i.e., γ(v) = argminu∈Vs
‖(∇θlcl(θ, ĥv, h̃v) −

∇θlcl(θ, ĥu, h̃u))‖. Hence, we can get the inequality:

‖
∑
v∈V

∇θlcl(θ, ĥv, h̃v)−
∑
u∈Vs

λu∇θlcl(θ, ĥu, h̃u)‖

≤
∑
v∈V

min
u∈Vs

‖∇θlcl(θ, ĥv, h̃v)−∇θlcl(θ, ĥu, h̃u)‖ (10)

To bound the estimation error for all θ ∈ Θ, we con-

sider a worst-case approximation of the estimation error

‖∇θlcl(θ, ĥv, h̃v) − ∇θlcl(θ, ĥu, h̃u)‖. Specifically, without

loss of generality, we utilize the representative GCN for analy-

sis. Following [90], [91], [92], we relax the nonlinear function

σ(·) in Eq. (1) of as a linear function, i.e., H = AL
nXθ. The

relaxed GCN can capture the key idea of GNNs: aggregating

information from neighbors. Also, we set lcl(·) in Eq. (5)

as lcl(θ, ĥv, h̃v) = ‖ĥv − h̃v‖22 by excluding the randomly

sampled negative nodes. Then, we can get Theorem 1.

Theorem 1. Let the raw aggregated information difference
of each node v ∈ V between each sampled positive view Ĝv

and the original graph Gv be bound with ε, i.e., ‖AL
nX[v]−

ÂL
nX̂[v]‖ ≤ ε. Given the graph G(V,A,X), an L-layer GCN

fθ with parameters θ ∈ Θ, the contrastive loss function
lcl(θ, ĥv, h̃v) = ‖ĥv − h̃v‖22, the gradient difference between
nodes v and u can be bounded as: ‖∇θlcl(θ, ĥv, h̃v) −
∇θlcl(θ, ĥu, h̃u)‖ ≤ c‖AL

nX[v]−AL
nX[u]‖+ 4cε, where the

constant c = 8ε ·maxθ∈Θ‖θ‖.

Proof. For Similarity, we use rv (resp. R) to denote AL
nX[v]

(resp. AL
nX). The derivative ∇θlcl(ĥv, h̃v) can be computed

as:∇θlcl(θ, ĥv, h̃v) = (r̂v− r̃v)
�(r̂v− r̃v)θ. Then, we can get

the following inequality.

‖∇θlcl(θ, ĥv, h̃v)−∇θlcl(θ, ĥu, h̃u)‖
= ‖(r̂v − r̃v)

�(r̂v − r̃v)θ − (r̂u − r̃u)
�(r̂u − r̃u)θ‖

≤ ‖θ‖‖(r̂v − r̃v)
�(r̂v − r̃v)− (r̂u − r̃u)

�(r̂u − r̃u)‖
≤ ‖θ‖‖((r̂v − r̃v)

� − (r̂u − r̃u)
�)(r̂v − r̃v)+

(r̂u − r̃u)
�((r̂v − r̃v)− (r̂u − r̃u)‖

≤ ‖θ‖(‖�rv‖+ ‖�ru‖)‖r̂v − r̃v − r̂u + r̃u‖
≤ ‖θ‖(‖�rv‖+ ‖�ru‖)(‖r̂v − r̂u‖+ ‖r̃v − r̃u‖)
≤ 8ε‖θ‖(‖rv − ru‖+ 4ε) (11)

Thus, under all θ ∈ Θ, the difference ‖∇θlcl(θ, ĥv, h̃v) −
∇θlcl(θ, ĥu, h̃u)‖ ≤ 8εmaxθ∈Θ‖θ‖(‖rv − ru‖+ 4ε).

Based on Theorem 1, we obtain the upper bound of coreset

selection on graph contrastive learning. Theorem 1 indicates

that the gradient difference between two nodes v and u can

be bounded by the raw aggregated information difference

‖AL
nX[v] − AL

nX[u]‖, which is independent of the GNN

parameter θ. Therefore, based on Theorem 1, we can transform

the Eq. (8) as follows.

RS(Vs) = min
Vs⊆V,|Vs|≤k

∑
v∈V

min
u∈Vs

‖AL
nX[v]−AL

nX[u]‖ (12)

However, there are two issues to directly optimizing

Eq. (12): (1) It requires compare the distance between

863

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 15,2024 at 06:28:51 UTC from IEEE Xplore. Restrictions apply.

all pairs of nodes to select k nodes, resulting in a time

complexity at least O(k|V |2). Such a computational

burden makes it impractical to scale well on large

graphs. (2). The selected coreset may be class-imbalanced.

Specifically, we can partition nodes V into nc clusters

C = {Ci}nc
i=1 by KMeans based on AL

nX. Then, we

can transform
∑

v∈V minu∈Vs
‖AL

nX[v]−AL
nX[u]‖ to∑nc

i=1

∑
v∈Ci

minu∈Vs‖AL
nX[v]−AL

nX[u]‖. Thus, since∑
v∈Ci

minu∈Vs‖AL
nX[v]−AL

nX[u]‖ can bring larger

value for large communities, it tends to select node in the

larger community Ci ∈ C and ignore nodes in smaller

communities. As a result, the selected coreset under a limited

budget becomes class-imbalanced. The selected nodes from

overrepresented classes may dominate the node representation

learning process, potentially leading to suboptimal node

representation learning for nodes in underrepresented classes.

Also, class-imbalanced coresets impede the ability of GCL

model to learn discriminative node representations that can

distinguish nodes in different classes. It is because the

comparisons between nodes in overrepresented classes and

nodes in underrepresented classes are limited. Consequently,

the node representations learned on class-imbalance coreset

may lead to poor performance on downstream tasks.

B. Cluster-based Corset Selection Problem
To solve these two issues, we formulate a cluster-based

coreset selection problem. The basic idea is to focus on

measuring the distance between each pair of nodes in the

same cluster while using a relaxed distance metric to compute

the distance between nodes in different clusters. Given node

clusters C = {Ci}nc
i=1, Eq. (12) can be bounded as follows.

∑

v∈V

min
u∈Vs

‖AL
nX[v]−AL

nX[u]‖=
nc∑

i=1

∑

v∈Ci

min
u∈Vs

‖AL
nX[v]−AL

nX[u]‖

≤
nc∑

i=1

∑

v∈Ci

min(min
u1∈CVs,i

‖AL
nX[v]−AL

nX[u1]‖,

min
u2∈Vs\CVs,i

(‖ci −AL
nX[u2]‖+ dmax

i)) (13)

where CVs,i = {v|v ∈ Ci, v ∈ Vs} is nodes in coreset Vs

belonging to cluster i. ci is the center vector of cluster i.
dmax
i is the maximum distance between nodes in cluster i and

the center of cluster i, i.e., dmax
i = maxv∈Ci‖ci −AL

nX[v]‖.
By optimizing the right formula in Eq. (13), we can exclu-

sively compute the distance between nodes within the same

cluster Ci ∈ C and the distance between each node and nc

cluster centers. It is more efficient compared to computing

the distance between all pairs of nodes. Also, the distance

between nodes in different clusters is relaxed to a larger value.

Therefore, given a cluster Ci, the formula tends to use the

node in Ci rather than the node in other clusters to represent

the other nodes in Ci. Such a way encourage nodes in coreset

from different clusters, thereby alleviating the class-imbalance

issue. In summary, we formally define the cluster-based corset

selection problem for graph contrastive learning as follows.

Definition 1 (Cluster-based Coreset Selection Problem).
Given graph G(V,A,X), budget k, the GNN with L, and node

Algorithm 2: Greedy Node Selection Algorithm

Input: Graph G(V,A,X), budget k, and GNN layer L
Output: Selected nodes Vs with weights {λv|v ∈ Vs}

1 Vs ← ∅; R = AL
nX

2 C = KMeans(V,R, nc)
3 while |Vs| < k do
4 Vsam = Random Sample(V \ Vs, ns)
5 for v ∈ Vsam do
6 RS(Vs ∪ {v}) ← Eq. (14)
7 �RS(v|Vs) = RS(Vs)−RS(Vs ∪ {v})
8 v∗ = argmaxv∈Vsam �RS(v|Vs)
9 Vs ← Vs ∪ {v∗}

10 for v ∈ Vs do λv = |{u|v = argminv1∈Vs d(v1, u), v ∈ V |;
11 Return Selected nodes Vs with weights {λv|v ∈ Vs}

clusters C = {Ci}nc
i=1, the target is to select a node coreset

Vs ⊆ V whose size |Vs| ≤ k by minimizing the objective:

min
Vs⊆V,|Vs|≤k

nc∑
i=1

∑
v∈Ci

min(min
u1∈CVs,i

‖AL
nX[v]−AL

nX[u1]‖,

min
u2∈Vs\CVs,i

(‖ci −AL
nX[u2]‖+ dmax

i)) (14)

where CVs,i is the set of nodes in coreset Vs belonging to
cluster i. ci is the center vector of cluster i. dmax

i is the
maximum distance between nodes in cluster i and the center
of cluster i, i.e., dmax

i = maxv∈Ci
‖ci −AL

nX[v]‖.

Theorem 2. The coreset selection problem is NP-hard.

Proof. In general, we prove the coreset selection problem is

NP-hard by the reduction from the k-cluster problem [93]. We

put the full proof in our technique report [94] Appx. A1

C. Sampling-based Greedy Algorithm

Theorem 2 indicates that the cluster-based coreset selection

problem is NP-hard. Therefore it is unlikely to obtain the

optimal solution of this problem in polynomial time unless

P=NP. In this subsection, we propose an efficient sampling-

based greedy algorithm to address this problem. Specifically,

we first define the marginal representative score gain brought

by each node v if we select it into Vs. Formally, given selected

nodes Vs, the marginal representative score gain of a node v
can be defined as �RS(v|Vs) = RS(Vs)−RS(Vs ∪ {v}).

As shown in Alg. 2, we will first initialize the representative

node set Vs as an empty set and compute the hidden repre-

sentations R = AL
nX of nodes aggregating from neighbors

(line 1). Then, we sample ns nodes Vsam from the un-selected

nodes V \ Vs. Finally, we will select the representative nodes

with the maximum marginal representative gain �RS(v|Vs)
into Vs from the sampled nodes Vsam (line 4-9). We will repeat

the selection process until until exceeding the node budget k.

Then, we assign each node in u ∈ V to the most similar node

v ∈ Vs and set the weight of each node v ∈ Vs as the number

of assigned nodes (line 10).

Theorem 3. Given ns = n
k log 1

ε , Alg. 2 can achieve an
approximation ratio of 1− 1/e− ε.

864

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 15,2024 at 06:28:51 UTC from IEEE Xplore. Restrictions apply.

Proof. Let Vi and Vopt denote the solution of Alg. 2 at the

i-th iteration and the optimal solution of Eq. (14), respec-

tively. We first prove that the expectation of Vi+1 satisfies

E(RS(Vi+1)) ≥ (1−(1− 1−ε
k)i+1)RS(Vopt). Then, we prove

that RS(Vs) ≥ (1−1/e−ε)·RS(Vopt). Due to space limit, we

put the full proof in our technique report [94] Appx. A2.

Time Complexity. Let cluster number be nc = μ|V | where

μ ∈ [0, 1]. In line 1, it takes O(D̄L|V |dx) to compute the

hidden representations R [95], where D̄ is the average degree.

In line 2, it takes O(μ|V |2dx) to cluster nodes. in line 4-9, it

takes O(|V |+ |V |/μ+μ|V |nsdx) to select one representative

node. Line 10 takes O(k|V |) Thus, the total time complexity

is O(D̄L|V |dx + μ|V |2dx + k(|V |+ |V |/μ+ μ|V |nsdx))

IV. VIEW GENERATOR

In this section, we first provide an insight to generate more

expressive positive views. Second, we formulate the view

generation problem that aims to generate both diverse and

locality-preserved positive views.

A. Insights on Expressive Positive Views

Intuitively, more augmentation operations tend to create

more expressive positive views. However, as shown in Tab. I,

existing contrastive learning approaches only use limited

operations, thereby restricting their ability to learn high-

quality node representation and damaging their effectiveness

on downstream tasks. We conduct experiments to further

reveal this idea. Without loss of generality, we take four rep-

resentative contrastive learning models as examples, including

ADGCL [37], MVGRL [34], GRACE [20], and GCA [25].

We conduct node classification on two widely used datasets,

namely Cora [96] and Amazon-computers [97]. As shown in

Tab. I, these original models, ADGCL, MVGRL, GRACE, and

GCA only cover {ED}, {EA,ED}, {ED,FM}, and {ED,FM},

respectively. We upgrade four models by adding {FP,EA},

{FP}, {EA,FP}, and {EA,FP} for them, respectively. As

shown in Fig. 2, the blue line is above the red line, indicating

that each ungraded model that uses more operations performs

better than its original model on both datasets.

To enable the model to generate expressive views, one

straightforward way is to employ all augmentation operations,

including edge deletion/addition, node dropping/addition,

feature perturbation/dropping/masking, subgraph sampling,

etc. [22], [24]. However, as the number of operations increases,

the model becomes more complex and the view generation

process becomes less efficient [22], [98]. To overcome this

issue, we provide Prop. 1 to demonstrate that three operations,

including edge addition, edge deletion, and feature perturba-

tion, can generate the same view space as all operations, which

ensures the expressiveness of generated positive views.

Proposition 1. In general, existing graph augmentation op-
eration set T includes edge deletion, edge addition, feature
masking, feature perturbation, feature dropping, node drop-
ping, node addition, and subgraph sampling [22], [24]. Then,
given G(V,A,X), the positive view space of each node v
generated by the three general operations, i.e., edge addition,

(a) Cora. (b) Amazon-Computers.

Fig. 2: Motivational experiments on more operations.

edge deletion, and feature perturbation, is the same as the
view space generated by all augmentation operations T .

Proof. In brief, we prove that the view Ĝv of a node v
generated by any operation combination from T can be

generated by three general operations. Due to space limit, we

put the full proof in our technique report [94] Appx. A3.

B. Positive View Generation Problem

Intuitively, these positive views of each node v should

preserve its important locality information in the original

graph, i.e., important local edges and node features. This

important locality information contains the intrinsic patterns

of each node, which can distinguish the differences among

nodes. Then, GNNs optimized by maximizing the similarity

of positive views in Eq. (3) are expected to learn node

representations that capture nodes’ intrinsic patterns. Given

a pre-trained GNN model fθ, the difference between node

v’s original local graph Gv and its positive view Ĝv can be

measured by the difference between node representations hv

and ĥv , i.e., ‖hv − ĥv‖2, where hv = fθ(Gv). A smaller

‖hv − ĥv‖2 indicates that Ĝv can preserve more important

locality information of node v.

In addition to preserving locality information, each positive

view pair should be diverse, i.e., they should have different

unimportant edges and features. In such a way, the pre-trained

GNNs can be insensitive to various noises. One intuitive way

of measuring the diversity of each pair of positive views

Ĝv(V̂v, Âv, X̂v) and G̃v(Ṽv, Ãv, X̃v) is based on their raw

aggregated features, ÂL
v,nX̂v (i.e., r̂v) and ÃL

v,nX̃v (i.e., r̃v),

where ÂL
v,n is the normalized adjacency matrix for positive

view Ĝv . Specifically, As introduced in Eq. (1) in Sec. II-A,

GNNs learn each node representation ĥv by a transformation

on the raw aggregated features ÂL
v,nX̂v . Thus, if ÂL

v,nX̂v and

ÃL
v,nX̃v are different while ĥv and h̃v are the similar, we

regard that Ĝv and Ĝv are diverse and contain different noise.

Formally, we define our view generation objective as follows.

Definition 2 (View Generation Problem). Given selected
nodes Vs, the GNN fθ with L layers, the graph G(V,A,X),
and three general augmentation operations Ts, including edge
deletion, edge addition, and feature perturbation, the target is
to generate two diverse and node locality-preserved positive
views Ĝv(V̂v, Âv, X̂v) and G̃v(Ṽv, Ãv, X̃v) for each node v
by minimizing the following objective lvg(G, v, Ts).

min
Ĝv,G̃v

‖ĥv − hv‖2 + ‖h̃v − hv‖2 − ‖r̂v − r̃v‖2 (15)

865

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 15,2024 at 06:28:51 UTC from IEEE Xplore. Restrictions apply.

where hv , ĥv , and h̃v are learned by fθ on the original graph
G, two positive views Ĝv , and G̃v , respectively.

Theorem 4. The view generation problem is NP-hard.

Proof. We prove the view generation problem is NP-hard by

the reduction from the Subset Sum Problem (SSP) [99]. We

put the full proof in our technique report [94] Appx. A4.

C. Sampling Algorithm

Theorem 4 shows that it is unlikely to generate two optimal

positive views in polynomial time unless P=NP. Therefore, we

propose an efficient edge-aware and feature-aware sampling

algorithm. The basic idea is first to collect neighbor candidates

for each selected node. Then, we compute the edge score

between candidate neighbors and the target node and compute

the feature score of each node. Based on these two scores,

we can sample neighbor candidates with higher scores for

connections and sample node features with lower scores for

perturbations. In such a way, these positive views can preserve

the important locality information. Moreover, the sampling

process will produce variance on two positive views, which

ensures the diversity of two positive views.

However, it is non-trivial to measure the edge score and

feature score. Taking the edge score as an example, one

straightforward way of measuring the score of an existing

(resp. un-existing) edge regarding node v is to compute the

node v’s representation difference after deleting (resp. adding)

the edge. Nevertheless, this process is inefficient [100], [90],

because we need to recompute the node representation after

each edge modification. Thus, we propose two metrics to

measure edge and feature score efficiently as follows.

1) Edge Score: We measure the edge score from the

perspective of node influence and node similarity. Intuitively,

if the neighbor u of node v is more influential, the node u
tends to affect the node representation of v. For example,

in a citation network, the high influential pioneer work cited

by a paper is more helpful in distinguishing the label of the

paper. Therefore, It has a higher risk of destroying the locality

intrinsic pattern of node v if we add a new edge (resp. delete

an existing edge) between node v with an influential node.

Formally, following [101], [25], we can compute the influen-

tial score of each node u based on node degree centrality:

ϕc(u) = log(Du + 1), where Du is the degree of node u.

Besides, the edge score also depends on the similarity between

these two connected nodes. According to current studies [90],

[91], [100], [102], if we delete (resp. add) edges with the

nodes that are more similar (resp. dissimilar) with node v, the

representation of v tends to be changed. Therefore, based on

node centrality and node similarity, the edge score between the

target node v and its neighbor candidate u can be computed

as follows:

we
v,u =

{
β · exp(ϕc(u) + Sim(v, u)), u ∈ Nv

(1− β) · exp(−ϕc(u) + Sim(v, u)), u ∈ V \Nv
,

where Sim(v, u) = c − ‖xv − xu‖ is the feature similarity

between v and u, and the constant c = max(v,u)∈E ‖xv − xu‖
and E denote all edges.

Algorithm 3: Positive View Generation Algorithm

Input: Graph G(V,A,X), layer numer L, selected nodes Vs, the
neighbor ratio τ̂ and τ̃ , and feature perturbation
hyperparameters η̂ and η̃

Output: Positive view set P̂G and P̃G
1 P̂G, P̃G ← ∅, ∅
2 for v ∈ Vs do
3 Ĝv ← {v, Âv , X̂v}, G̃v ← {v, Ãv , X̃v}
4 for l = 0 to L− 1 do
5 for u ∈ N̂ l

v do
6 V N

u = N1
u ∪N2

u

7 N̂u = Sample(V N
u , P (·|u, V N

u), τ̂ |Nu|)
8 for u1 ∈ N̂u do Âv [u][u1] = 1, X̂v [u1] = X[u1]

9 for u ∈ Ñ l
v do

10 V N
u = N1

u ∪N2
u

11 Ñu = Sample(V N
u , P (·|u, V N

u), τ̃ |Nu|)
12 for u2 ∈ Ñu do Ãv [u][u2] = 1, X̃v [u2] = X[u2]

13 for u ∈ V̂v do
14 for i = 1 to dx do X̂v [u][i] ← Eq. (16)

15 for u ∈ Ṽv do
16 for i = 1 to dx do X̃v [u][i] ← Eq. (16)

17 P̂G = P̂G ∪ {Ĝv}, P̃G = P̃G ∪ {G̃v}
18 Return: Positive view set P̂G and P̃G

2) Feature Score: We measure the node feature score

from the perspective of feature frequency and node influ-

ence. Intuitively, if a feature appears more frequently in the

influential nodes, this feature is more important [25]. Thus,

the global importance wf
i of the i-th dimension feature can

be defined as wf
i =

∑
v∈V ϕc(v) · |xv[i]|, where xv[i] is

node v’s i-th dimension feature. Besides, as we discussed

above, one neighbor with high centrality tends to affect the

target node’s representation. Thus, if the neighbor u has larger

centrality, the probability of perturbing its features should be

lower. Formally, given a target node v, the score of the i-
th dimension feature of its neighbor u can be computed as

wf
xv [i]

= wf
i · ϕc(v).

3) Edge-aware and Feature-aware Sampling Algorithm:
The basic idea is to generate two diverse and node locality-

preserved positive views for each selected node by sampling

nodes with higher edge scores as neighbors and perturbing

unimportant node features accordingly. The sampling algo-

rithm is summarized in Alg. 3. Specifically, for each selected

node v ∈ Vs, we first initialize its two positive views Ĝv

and G̃v (line 3), where each positive view only contains the

target node v. The adjacency matrix Âv and Ãv are empty,

and node features X̂v and X̃v only contain the node feature

xv . Then, we sample neighbors of node v from 1-hop to L-

hop iteratively for the two positive view Ĝv and G̃v (line

4-12). Particularly, for each node u ∈ N l
v , we only consider

the 1-hop and 2-hop neighbors of u in the original graph as

its neighbor candidates V N
u = N1

u ∪ N2
u . Such a way avoids

introducing too much noise. Then, we independently sample

τ̂ |Nu| edges from V N
u , where the probability of each node

u1 ∈ V N
u that is selected as the neighbor of u is defined as

the normalized edge score as P (u1|u, V N
u) =

we
u,u1∑

u2∈V N
u

we
u,u2

.

Similarly, we can independently sample τ̃ |Nu| nodes from V N
u

866

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 15,2024 at 06:28:51 UTC from IEEE Xplore. Restrictions apply.

as the neighbors for the positive view G̃v . We will repeat

the sampling process until we obtain the L-hop neighbors of

node v for both positive views. After finishing sampling edges

for both positive views, we will perturb the features of each

node in two positive views (line 13-16). Specifically, for each

node u ∈ V̂v in positive view Ĝv ,we can perturb the i-th
dimensional feature xu[i] as follows:

x̂u[i] = xu[i] + m̂u[i] · (2 · Uniform(0, 1)− 1) · xu[i], (16)

where m̂u[i] ∼ Bernoulli(p̂xu[i]) ∈ {0, 1} is a mask that de-

cides whether to perturb xu[i]. Also, p̂xu[i] = η̂ · wf
max−wf

xu[i]

wf
max−wf

mean

is the normalized probability of perturbing the node u’s i-

th dimensional feature xu[i], where two constants wf
max =

maxv∈V wf
xv [i]

and wf
mean =

∑
v∈V wf

xv [i]
/|V | are the max

and mean value of i-th feature score of all nodes, and η̂ is a

hyperparameter to control the maximum probability to perturb

node features. Additionally, 2 ·Uniform(0, 1)− 1 ∈ [−1, 1] is

to control the magnitude of feature perturbation. Generally, a

node feature with a lower score is more likely to be perturbed.

Similarly, we can perturb the node features for positive view

G̃v with the hyperparamter η̃. Finally, the algorithm will return

the positive views P̂G and P̃G for all selected nodes.

Time Complexity. The edge score and feature score of

candidate nodes can be pre-computed and used for all selected

nodes Vs, which takes O(|Vs|D̄L+1+|V |dx) time. Given an L-

layer GNN, it takes O(D̄L+1) to construct the structure of two

positive views for each selected node (line 3-12). Then, it takes

O(D̄Ldx) to perturb node features (line 13-16). Therefore, the

total complexity of generating positive views for all nodes is

O(|V |dx + |Vs|(D̄L+1 + D̄Ldx)).
Remarks: As described in Sec. IV-C, Alg. 3 computes edge

scores and feature scores only based on node features and

degrees, which are extracted from the raw graph data. In

other words, it does not depend on GNN parameters or GNN

outputs, making it suitable for generating views for any GNNs.

V. EXPERIMENTS

In this section, we compare our proposed framework

E2GCL against state-of-the-art baselines. Also, we visualize

the selected nodes in technique report [94] Appx. B4.

A. Experiment Setting

1) Tasks and Datasets: Following current approaches [22],

[20], [25], [34], [98], we utilize the node classification task

to evaluate our framework on seven widely used benchmark

datasets, namely, Cora [96], Citeseer [96], Computers [97],

Photo [97], CS [97], Arxiv [103], and Products [104]. The

detailed statistics are in Tab. III and the detailed descriptions

are in our technique report Appx. B2.

2) Evaluation Protocol: We follow the evaluation pro-

tocol of previous state-of-the-art contrastive learning ap-

proaches [22], [20], [24], [25], [34], [98]. As illustrated in

Alg. 1 (line 1-5), existing contrastive learning approaches,

including our proposed E2GCL, first pre-train the encoder

GNN fθ in the contrastive learning manner, i.e., without labels.

Particularly, existing approaches use all nodes to train GNNs,

TABLE III: The datasets statistics. Degree is the average

degree per node. #Feature is the feature dimension.

Dataset #Node #Edge Degree #Feature #Class
Cora 2,708 5,278 3.89 1,433 7

Citeseer 3,327 4,552 2.74 3,703 6
Photo 7,650 119,081 31.13 745 8

Computers 13,752 245,861 35.76 767 10
CS 18,333 81,894 8.93 6,805 15

Arxiv 169,343 1,166,243 13.77 128 40
Products 1,569,960 264,339,468 336.74 200 107

i.e., Vs = V , while our proposed E2GCL selects Vs under

node budget k as introduced in Sec. III. Second, we evaluate

the effectiveness of the contrastive learning approaches by a

simple l2-regularized linear decoder qϕ (line 6 in Alg. 1). This

procedure allows node labels for the node classification task.

For each dataset, we randomly split all nodes V into 10%,

10%, and 80% for training, validation, and testing, respec-

tively. Besides, for fair comparisons, we run the evaluation

process 10 times on different data splits, and report the average

test accuracy and standard deviation.

3) Baselines: We follow existing approaches to compare

representative and state-of-the-art baselines in the three cat-

egories: (1) Supervised and Semi-supervised learning ap-

proaches, including MLP and GCN [18], are trained by the

end-to-end manner on node labels in Eq. (3). (2) Traditional

unsupervised learning approaches, including DeepWalk [32]

and Node2Vec [105]. (2) Graph contrastive learning ap-

proaches, including GAE [106], VGAE [106], DGI [107],

AFGRL [31], BGRL [36], MVGRL [34], GRACE [20],

GCA [25]. The last two categories follow Alg. 1 for evaluation.

They first use all nodes to optimize their encoder to learn

node representations from the unlabeled graphs. Then, they use

these learned representations to train a simple l2-regularized

linear decoder for node classification. Different from existing

works, our proposed E2GCL selects Vs under node budget
k and only use Vs to pre-train GNNs. Due to space limit, the

baseline details are list in technique report [94] Appx. B3.

4) Hyperparameter Setting: For the baselines, we use their

default hyper-parameter setting. Also, unsupervised and con-

trastive learning baselines use all nodes to learn representations

from unlabeled graphs. For our proposed E2GCL, due to

different datasets with different sizes, we use the node ratio r
to control the node budget k, i.e., k = r·|V |. By default, we set

r = 0.4 for seven datasets. Also, we take a 2-layer GCN [18]

as our encoder model. Besides, based on validation data, we

tune cluster number in Alg. 2 nc ∈ {100, 200, · · · , 1000}
for the large Products data and tune nc ∈ {30, 60, · · · , 180}
for the other datasets. We tune sampling number in Alg. 2

nc ∈ {200, 400, · · · , 2000} for the large Products data and

tune ns ∈ {100, 200, ·, 1000} for the other datasets. We tune

the neighbor sampling number τ̂ and τ̃ , and feature perturba-

tion η̂ and η̃ in Alg. 3 from {0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4}.

We set the upper value of the neighbor and feature as 1.4, since

sampling more edges and perturbing more node features will

introduce noise. The training batch is 500 for all approaches.

867

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 15,2024 at 06:28:51 UTC from IEEE Xplore. Restrictions apply.

B. Main Results
1) Effectiveness Evaluation: As shown in Tab. IV and

Tab. V, our proposed E2GCL outperforms the other baselines

on all seven datasets. Specifically, supervised approaches, in-

cluding GCN and MLP, do not achieve superior performance.

It is because these models only rely on limited training labels

to optimize GNNs, thereby degrading the generalization of the

learned node representations. Unlike supervised approaches,

traditional unsupervised and current GCL approaches first

learn node representations from the unlabeled graph and opti-

mize a simple decoder with training labels as shown in Alg. 1.

Such a way enables the learned node representations to be

more generalizable. Particularly, traditional contrastive learn-

ing approaches, including DeepWalk and Node2Vec, achieve

unsatisfying performance, because they only rely on graph

structure and neglect node features to learn node representa-

tions. Instead, by incorporating both node features and graph

structure, current GCL approaches, such as GCA, MVGRL,

GRACE, and AFGRL, achieve satisfying performance.
E2GCL outperforms these contrastive learning approaches,

even though we only use the top-k nodes to optimize GNNs. It

is because redundant nodes exist in a graph, which allows us to

select representative nodes to represent the entire graph. Then,

GNNs optimized by the positive views of these representative

nodes can learn generalizable representations as well as GNNs

optimized by all nodes. Besides, compared with current works,

E2GCL uses three general augmentation operations (edge

addition, edge deletion, and feature perturbations) to gen-

erate more expressive, diverse, and importance information-

preserved positive views for each node.
2) Efficiency Evaluation: First, we use widely used training

time-accuracy curve to comprehensively evaluate the effi-

ciency of E2GCL. The total training time includes the time

of training node selection, view generation, and GNN opti-

mization. For simplicity, we show the time-accuracy curve

of E2GCL on Cora and Citeseer data, since similar trends

are observed on other datasets. Also, without loss of general-

ity, we only compare the most effective contrastive learning

baselines, including AFGRL, BGRL, MVGRL, GRACE, and

GCA. As illustrated in Fig. 3, E2GCL converges faster and

achieves better performance than baselines at the same time,

demonstrating superior efficiency.
Second, we report the top-k node selection time (ST), the

total training time (TT) of CGL models convergence (line 1-5

in Alg. 1), and the accuracy of node classification on the two

large data, i.e., Arxiv and Products. Specifically, as shown in

Tab. V, the node selection is efficient, which is only a relatively

small portion of the total training time. Also, the total training

time on E2GCL convergence is smaller than other baselines.

It is because E2GCL selects a coreset of nodes with size k
that can represent all nodes V . Besides, E2GCL can generate

expressive positive views. Such two ways ensure that E2GCL
can converge faster and perform the best.

C. Ablation Study
1) The Framework: Here, we compare the version

of E2GCL (E2GCLS,I) with the other three variants.

TABLE IV: Node classification performance (Accuracy ±
Std). DW and N2V are DeepWalk and Node2Vec, respectively.

Model Cora Citeseer Photo Computers CS
MLP 57.15±0.86 57.98±0.55 80.57±0.24 76.04±0.71 90.10±0.49
GCN 82.46±0.72 70.93±0.51 92.15±0.68 86.15±0.63 92.59±0.45
DW 72.93±0.91 52.67±0.65 88.10±0.94 83.31±0.52 81.94±0.98
N2V 71.61±0.85 54.06±0.61 87.85±0.86 83.36±0.57 83.25±0.78
GAE 78.35±0.58 67.36±0.63 90.61±0.43 81.62±0.76 89.77±0.59
VGAE 80.33±0.76 70.89±0.46 91.42±0.35 84.26±0.67 91.90±0.43
DGI 81.24±0.67 70.46±0.50 90.49±0.41 82.31±0.37 92.03±0.24
BGRL 79.52±0.56 70.06±0.96 91.35±0.40 86.10±0.51 90.07±0.29
AFGRL 81.94±0.73 70.38±1.15 92.23±0.24 87.46±0.56 93.04±0.16
MVGRL 82.36±0.55 71.23±0.54 90.98±0.26 87.24±0.47 92.36±0.31
GRACE 82.31±0.56 70.65±0.32 91.38±0.81 86.74±0.25 92.41±0.15
GCA 83.33±0.47 71.47±0.72 92.24±0.21 87.36±0.38 92.50±0.13

E2GCL 84.06±0.21 71.86±0.61 93.02±0.47 88.92±0.52 93.15±0.19

(a) Cora. (b) Citeseer.

Fig. 3: Efficiency evaluation by accuracy-time curve.

E2GCLA,U uses All nodes to train GNNs, and it Uniformly

modifies edges and perturbs node features to generate positive

views for nodes. E2GCLS,U uses the Selected representative

nodes to train GNNs, and it Uniformly modifies edges and

perturbs node features. Also, E2GCLS,I uses the Selected

representative nodes to train GNNs, and it modifies edges

and perturbs node features according to the edge and node

feature Importance. As illustrated in Tab. VI, E2GCLA,U

and E2GCLS,U achieve unsatisfying performance, since they

uniformly modify edges and node features and thereby can-

not preserve the important locality information of nodes.

Particularly, E2GCLS,I achieves the best and comparable

performance with E2GCLA,I , even though E2GCLS,I only

train GNN on the top-k nodes. It is because these selected

nodes can fully represent the entire graphs. Overall, since

the training time decreases as the number of training nodes

decreases, the best and comparable results on partial nodes

imply the practicability of our proposed framework.

2) Node Selector: To verify that the selector can select

representative nodes, we compare five baselines, i.e., Random,

Degree, KMeans, KCG [108], and Grain [5]. Specifically,

Random randomly selects k nodes from all nodes. KMeans

first separates nodes into 10 clusters, and then randomly selects

k nodes from each cluster. Degree defines the probability that

each node v can be selected as
log(Dv+1)∑

u∈V log(Du+1) , where Dv is

the node v’s degree. Then, Degree samples k nodes from all

nodes based on the degree-based probability. KCG and Grain

are semi-supervised settings, i.e., they incorporate node labels

to train models and compute the node similarity accordingly.

To fit the contrastive settings (i.e., without labels), KCG and

Grain use aggregated raw features to compute node similarity.

As shown in Tab. VII, our proposed framework outperforms

the other baselines. It demonstrates that our node selector

868

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 15,2024 at 06:28:51 UTC from IEEE Xplore. Restrictions apply.

TABLE V: Results on two large data, i.e., Arxiv and Products.

ST and TT denote the average Selection Time (seconds) and

the total Training Time (seconds). ST is “− ” for baselines

since they use all nodes for training without selection. “ ∼ ”
denotes that the model cannot converge in 3 days.

Model Arxiv Products
Accuracy ST TT Accuracy ST TT

AFGRL 43.14±0.39 - 7,338.5 26.51±0.02 - 147,923.2
MVGCL 43.95±0.23 - 8,246.2 ∼ ∼ ∼
GRACE 43.37±0.31 - 7,781.3 26.28±0.03 - 208,261.9

GCA 44.76±0.29 - 6,292.9 26.91±0.03 - 193,825.7

E2GCL 45.26±0.26 70.5 3,106.8 27.21±0.02 4,219.2 82,195.7

can select more representative nodes than the other baselines,

ensuring the effectiveness of GNNs.
3) Edge-aware and Feature-aware View Generator: To

further verify the effectiveness of view generator in Sec. IV,

we compare our edge-aware and feature-aware sampling with

a uniform sampling manner. Specifically, we compare three

variants of E2GCL\F\S, E2GCL\S, and E2GCL\F.

Specifically, E2GCL\F\S perturbs each dimension of node

Features and modifies graph Structure uniformly, i.e., the

probabilities of perturbing node features and sampling an edge

are the same to all nodes. Similarly, E2GCL\S samples edge

uniformly while perturbing node features based on feature

score. E2GCL\F perturbs node feature uniformly while

sampling edges based on edge score.
As shown in Tab. VIII, our edge-aware and feature-

aware E2GCL outperforms the other variants, espe-

cially E2GCL\F\S with uniform sampling. In addition,

E2GCL\S and E2GCL\F are superior to E2GCL\F\S.

It demonstrates that our generator can preserve the important

locality information based on measuring both feature and edge

scores, and thereby can learn high-quality node representation.

In particular, E2GCL\F is better than E2GCL\S. It is

because modifying one important edge will have a greater

impact on the quality of node representation than modifying

one important feature [90], [91], [100].

D. Parameter Sensitivity
1) Node Budget k: We evaluate the effect of node budget

on five datasets, including Cora, Citeseer, Photo, Computers,

and CS. Recall that the node budget k = r · |V | is controlled

by the node rate r. Here we study the influence of different

node budget by setting node rates r ∈ {1, 1
2 , · · · , 1

29 ,
1

210 } on

the all five datasets. As shown in Fig. 4 (a), as the node budget

decreases, the node classification accuracy of five datasets first

maintains the similar result as GNNs trained on all nodes and

then drops. It reveals that there exist redundant nodes in the

graph, which provides an opportunity to select a node subset

to represent the entire graph. In such a way, GNNs trained

on the node subset can achieve similar performance as GNNs

trained on all nodes. In particular, as the node budget de-

creases significantly, the performance on Computers and Photo

decreases more drastically than the other three datasets. It is

because the nodes in Computers and Photo are more similar

than those of the other datasets. Thus, limited selected nodes

cannot help GNNs learn distinguishable node representations,

thus damaging the performance on downstream tasks.

TABLE VI: The effectiveness evaluation on the framework.

Cora Citeseer Photo Computers CS
E2GCLA,U 82.89±0.77 70.27±0.39 88.15±0.75 81.82±0.54 92.02±0.17
E2GCLS,U 83.26±0.42 70.62±0.68 87.71±0.71 82.08±0.53 92.27±0.26
E2GCLA,I 83.91±0.24 72.14±0.56 93.11±0.17 88.74±0.38 93.02±0.15

E2GCLS,I 84.06±0.21 71.86±0.61 93.02±0.47 88.92±0.52 93.15±0.19

TABLE VII: Evaluation on different selection strategy.

Cora Citeseer Photo Computers CS
Random 81.22±0.65 67.71±1.49 91.36±0.57 87.05±0.76 91.21±0.50
Degree 82.30±0.69 68.61±0.56 91.71±0.35 87.39±0.43 91.82±0.24

KMeans 82.49±0.56 70.52±0.60 92.30±0.29 88.10±0.24 92.10±0.14
KCG 82.61±0.49 70.27±0.54 92.46±0.25 87.81±0.19 92.32±0.26
Grain 83.21±0.67 70.94±0.58 92.65±0.36 88.26±0.35 92.64±0.21
Ours 84.06±0.21 71.86±0.61 93.02±0.47 88.92±0.52 93.15±0.19

TABLE VIII: Evaluation on view generator sampling strategy.
Cora Citeseer Photo Computers CS

E2GCL\F\S 82.67±0.56 70.40±0.67 86.02±0.51 81.52±0.56 91.98±0.14
E2GCL\S 82.81±0.56 70.94±0.52 88.79±0.42 86.09±0.49 92.61±0.20
E2GCL\F 83.21±0.59 71.30±0.45 92.51±0.28 88.41±0.32 92.82±0.19

E2GCL 84.06±0.21 71.86±0.61 93.02±0.47 88.92±0.52 93.15±0.19

2) Cluster Number nc and Sampled Node Number ns:
We evaluate the effect of cluster number nc and the sam-

pled node number ns in Alg. 2. First, we vary nc ∈
{30, 60, 90, 120, 180} on Computers and Arxiv and show node

classification accuracy in y1-axis, the node selection time

and the total training time (including node selection, view

generation, and GNN optimization) in y2-axis. We set the

node sampling number ns = 300 to default. To put the results

of two data into one picture, we normalize the accuracy and

the time by dividing the result by the first variant nc = 30.

As shown in Fig. 4 (b), as the nc increases, the selection

time (dashed lines) increases, since comparisons between

cluster centers and sampled nodes increase. Note that since

the selection time includes pre-processing time, such as raw

representation computation and clustering, selection time does

not increase linearly with sampling number. Also, The total

training time (dotted lines) and the accuracy (solid lines)

change slightly with different nc. It demonstrates that the top-

k selected nodes based on different nc have limited impacts

on accuracy and time. In particular, the increases of selection

time does not significantly affect the total time, because the

selection time, as demonstrated in Section V-B2, is a relatively

small portion of the total training time.

Second, we vary ns ∈ {100, 200, · · · , 1000} on Computers

and Arxiv and set the cluster number nc = 120 to default.

Similarly, we normalize the accuracy and the time by dividing

the result by the first variant ns = 100. As shown in Fig. 4 (c),

as the ns increases, the selection time (dashed lines) increases,

since comparisons between cluster centers and sampled nodes

increase as well. Also, the total training time (dotted lines)

slightly changes, indicating that ns has limited impacts on

the total training time of E2GCL. Additionally, the accuracy

(solid lines) on both datasets first rises before stabilizing. It

demonstrates that sampling can speed up the selection process

with satisfactory performance and that it is not necessary to

employ all nodes when choosing the representative node.

3) The Hyperparameter τ̂ and τ̃ : We vary τ̂ , τ̃ ∈
{0, 0.2, 0.6, 0.4, 0.8, 1.0, 1.2, 1.4}. Higher τ̂ and τ̃ indicate

869

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 15,2024 at 06:28:51 UTC from IEEE Xplore. Restrictions apply.

(a) Node budget k = r · |V | (b) Cluster number nc (c) Sampled node number ns (d) Edge rate τ̂ and τ̃ (e) Feature rate η̂ and η̃

Fig. 4: Parameter sensitivity evaluation.

sampling more neighbors for each node. Without loss of gen-

erality, we show the evaluation on Cora, since the observations

are similar on the other datasets. As shown in Fig. 4 (d),

as τ̂ and τ̃ are smaller, the accuracy is unsatisfied, because

sampling a few neighbors for each node cannot preserve the

node locality information. In addition, as τ̂ and τ̃ increase, the

accuracy first increases and then decreases. The reason is that

sampling more neighbors for each node can preserve node

locality information. Besides, due to the sampling variance,

two diverse positive views have different structures and node

features. Thus, GNNs optimized on these locality-preserved

and diverse positive views can perform effectively. However,

as τ̂ and τ̃ are very larger, the accuracy decreases, because

sampling too many neighbors may introduce noise.
4) The Hyperparameter η̂ and η̃: Similar to Sec. V-D3,

we vary η̂, η̃ ∈ {0, 0.2, 0.6, 0.4, 0.8, 1.0, 1.2, 1.4} on Cora.

The larger η̂ and η̃ tend to perturb more node features. As

illustrated in Fig. 4 (e), as η̂ and η̃ increase, the accuracy

first increases and then decreases. It is because our generator

tends to perturb the unimportant features and maintain the

important features. Thus, when η̂ and η̃ initially increase, the

generated positive views can preserve the node’s important

locality information and are diverse, thereby enhancing the

performance of GNNs. Also, when both η̂ and η̃ are very

large, the accuracy decreases, because higher η̂ and η̃ will

cause important features to be perturbed. Thus, positive views

lose the important locality information in the original graph.

E. Additional Experiments
To explore more generality of our E2GCL, we conduct

experiments on link prediction and graph classification tasks.

We compare E2GCL with these effective contrastive learning

baselines, including AFGRL, BGRL, MVGRL, GRACE, and

GCA. The setting of GCL models is the same in Sec. V-A4.
1) Link Prediction Task: We utilize three datasets, i.e.,

Photo [97], Computer [97], and CS [97] to evaluate our frame-

work and baselines. Specifically, given all edges, we randomly

select 70%/10%/20% edges as the training/validation/testing

edges. Note that when optimizing GNNs by E2GCL and other

GCL baselines, we exclusively retained the training edges in

the graph to prevent potential leakage of validation and testing

information. As shown in Tab. IX, E2GCL outperforms all

baselines, demonstrating that E2GCL is also generalizable on

the link prediction task.
2) Graph Classification Task: Following [34], [60], [109],

we use the SUM function as the READOUT function, i.e.,

zi =
∑

v∈Vi
Hi[v]. We utilize three benchmark datasets

for evaluation, including NCI1 [110], PTC MR [110], and

TABLE IX: Results on link prediction and graph classification.

Link Prediction Graph Classification
Photo Computer CS NCI1 PTC MR Proteins

AFGCL 71.87±1.95 72.95±1.82 66.95±0.59 74.79±2.07 69.84±2.17 76.77±1.98
BGRL 71.74±2.02 72.30±1.79 65.92±0.86 74.12±2.51 68.21±2.95 76.12±2.61
MVGCL 71.49±1.71 72.92±1.64 66.61±0.72 74.71±2.12 69.21±2.76 76.57±1.87
GRACE 71.71±1.91 72.64±1.59 66.45±0.77 74.57±1.82 68.88±2.23 76.89±1.93
GCA 72.30±1.68 73.21±1.82 67.32±0.83 75.13±1.69 70.12±1.76 76.96±2.32

E2GCL 72.41±1.72 73.57±1.58 67.66±0.78 75.57±1.75 70.55±2.19 77.12±1.76

Proteins [110]. The data statistics and descriptions are in

our technique report [94] Appx-Tab. X. Specifically, for each

dataset, we randomly select 70%/10%/20% graphs as the train-

ing/validation/testing data. We set the node budget ki = r|Vi|
for each graph Gi. As shown in Tab. IX, E2GCL outperforms

all baselines, demonstrating that E2GCL is also generalizable

for the graph classification task. It is because E2GCL can

learn high-quality node representations for each node. As a

result, the representation of each graph summarized on node

representations is also high-quality, leading to more accurate

graph class predictions.

VI. CONCLUSION

In this paper, we propose an efficient and expressive con-

trastive learning framework for GNNs, namely E2GCL, which

consists of two components, i.e., node selector and view

generator. First, instead of all nodes, the node selector selects a

limited number of nodes that can represent the entire graph to

train GNNs. Second, the view generator employs three general

operations (edge deletion, edge addition, and feature pertur-

bation) to generate expressive, diverse, and locality-preserved

positive views for selected nodes based on edge and feature

importance. The superior effectiveness and efficiency of our

proposed E2GCL are demonstrated by extensive experiments

on various downstream tasks.

ACKNOWLEDGMENT

Lei Chen’s work is partially supported by National Science

Foundation of China (NSFC) under Grant No. U22B2060,

the Hong Kong RGC GRF Project 16213620, RIF Project

R6020-19, AOE Project AoE/E-603/18, Theme-based project

TRS T41-603/20R, CRF Project C2004-21G, China NSFC

No. 61729201, Guangdong Basic and Applied Basic Research

Foundation 2019B151530001, Hong Kong ITC ITF grants

MHX/078/21 and PRP/004/22FX, Microsoft Research Asia

Collaborative Research Grant and HKUST-Webank joint re-

search lab grants. Xiaofang Zhou’s work is partially supported

by the JC STEM Lab of Data Science Foundations funded by

The Hong Kong Jockey Club Charities Trust, HKUST-China

Unicom Joint Lab on Smart Society, and HKUST-HKPC Joint

Lab on Industrial AI and Robotics Research.

870

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 15,2024 at 06:28:51 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Y. Cui, K. Zheng, D. Cui, J. Xie, L. Deng, F. Huang, and X. Zhou,
“Metro: a generic graph neural network framework for multivariate
time series forecasting,” Proceedings of the VLDB Endowment, vol. 15,
no. 2, pp. 224–236, 2021.

[2] Y. Chen, X. Li, G. Cong, C. Long, Z. Bao, S. Liu, W. Gu, and F. Zhang,
“Points-of-interest relationship inference with spatial-enriched graph
neural networks,” Proceedings of the VLDB Endowment, vol. 15, no. 3,
pp. 504–512, 2021.

[3] A. Vretinaris, C. Lei, V. Efthymiou, X. Qin, and F. Özcan, “Medical
entity disambiguation using graph neural networks,” in Proceedings of
the 2021 International Conference on Management of Data, 2021, pp.
2310–2318.

[4] X. Wang, D. Lyu, M. Li, Y. Xia, Q. Yang, X. Wang, X. Wang, P. Cui,
Y. Yang, B. Sun et al., “Apan: Asynchronous propagation attention
network for real-time temporal graph embedding,” in Proceedings of
the 2021 International Conference on Management of Data, 2021, pp.
2628–2638.

[5] W. Zhang, Z. Yang, Y. Wang, Y. Shen, Y. Li, L. Wang, and B. Cui,
“Grain: improving data efficiency of gra ph neural networks via diver-
sified in fluence maximization,” Proceedings of the VLDB Endowment,
vol. 14, no. 11, pp. 2473–2482, 2021.

[6] R. Zhu, K. Zhao, H. Yang, W. Lin, C. Zhou, B. Ai, Y. Li, and
J. Zhou, “Aligraph: a comprehensive graph neural network platform,”
Proceedings of the VLDB Endowment, vol. 12, no. 12, pp. 2094–2105,
2019.

[7] C. Zheng, H. Chen, Y. Cheng, Z. Song, Y. Wu, C. Li, J. Cheng, H. Yang,
and S. Zhang, “Bytegnn: efficient graph neural network training at large
scale,” Proceedings of the VLDB Endowment, vol. 15, no. 6, pp. 1228–
1242, 2022.

[8] R. Yang, J. Shi, X. Xiao, Y. Yang, and S. S. Bhowmick, “Homogeneous
network embedding for massive graphs via reweighted personalized
pagerank,” Proceedings of the VLDB Endowment, vol. 13, no. 5, pp.
670–683, 2020.

[9] L. Wei, H. Zhao, and Z. He, “Designing the topology of graph
neural networks: A novel feature fusion perspective,” arXiv preprint
arXiv:2112.14531, 2021.

[10] H. LI, S. Di, and L. Chen, “Revisiting injective attacks on recommender
systems,” Advances in Neural Information Processing Systems, vol. 35,
pp. 29 989–30 002, 2022.

[11] Z. Wang, S. Di, and L. Chen, “Autogel: An automated graph neural net-
work with explicit link information,” Advances in Neural Information
Processing Systems, vol. 34, pp. 24 509–24 522, 2021.

[12] C. T. Duong, T. D. Hoang, H. Yin, M. Weidlich, Q. V. H. Nguyen,
and K. Aberer, “Efficient streaming subgraph isomorphism with graph
neural networks,” Proceedings of the VLDB Endowment, vol. 14, no. 5,
pp. 730–742, 2021.

[13] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” arXiv preprint arXiv:1810.00826, 2018.

[14] X. Liu, H. Pan, M. He, Y. Song, X. Jiang, and L. Shang, “Neural
subgraph isomorphism counting,” in Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2020, pp. 1959–1969.

[15] G. Bouritsas, F. Frasca, S. P. Zafeiriou, and M. Bronstein, “Improving
graph neural network expressivity via subgraph isomorphism counting,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

[16] J. Gao, J. Chen, Z. Li, and J. Zhang, “Ics-gnn: lightweight interactive
community search via graph neural network,” Proceedings of the VLDB
Endowment, vol. 14, no. 6, pp. 1006–1018, 2021.

[17] Y. Jiang, Y. Rong, H. Cheng, X. Huang, K. Zhao, and J. Huang,
“Query driven-graph neural networks for community search: from
non-attributed, attributed, to interactive attributed,” Proceedings of the
VLDB Endowment, vol. 15, no. 6, pp. 1243–1255, 2022.

[18] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[19] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio,
and Y. Bengio, “Graph attention networks,” arXiv preprint
arXiv:1710.10903, 2017.

[20] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang, “Deep graph
contrastive representation learning,” arXiv preprint arXiv:2006.04131,
2020.

[21] Y. Liu, M. Jin, S. Pan, C. Zhou, Y. Zheng, F. Xia, and P. Yu, “Graph
self-supervised learning: A survey,” IEEE Transactions on Knowledge
and Data Engineering, 2022.

[22] Y. Zhu, Y. Xu, Q. Liu, and S. Wu, “An empirical study of graph
contrastive learning,” in Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 2), 2021.

[23] Y. Xie, Z. Xu, J. Zhang, Z. Wang, and S. Ji, “Self-supervised learning
of graph neural networks: A unified review,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2022.

[24] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph con-
trastive learning with augmentations,” Advances in Neural Information
Processing Systems, vol. 33, 2020.

[25] Y. Zhu et al., “Graph contrastive learning with adaptive augmentation,”
in Proceedings of the Web Conference 2021, 2021, pp. 2069–2080.

[26] W. Zhang, Y. Shen, Y. Li, L. Chen, Z. Yang, and B. Cui, “Alg: fast and
accurate active learning framework for graph convolutional networks,”
in Proceedings of the 2021 International Conference on Management
of Data, 2021, pp. 2366–2374.

[27] J. Xia, L. Wu, J. Chen, B. Hu, and S. Z. Li, “Simgrace: A simple
framework for graph contrastive learning without data augmentation,”
in Proceedings of the ACM Web Conference 2022, 2022, pp. 1070–
1079.

[28] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple frame-
work for contrastive learning of visual representations,” in International
conference on machine learning. PMLR, 2020, pp. 1597–1607.

[29] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, “Unsupervised feature learning
via non-parametric instance discrimination,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2018,
pp. 3733–3742.

[30] A. Jaiswal, A. R. Babu, M. Z. Zadeh, D. Banerjee, and F. Makedon,
“A survey on contrastive self-supervised learning,” Technologies, vol. 9,
no. 1, p. 2, 2020.

[31] H. Wang, J. Zhang, Q. Zhu, and W. Huang, “Augmentation-free graph
contrastive learning,” arXiv preprint arXiv:2204.04874, 2022.

[32] B. Perozzi et al., “Deepwalk: Online learning of social representations,”
in Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2014, pp. 701–710.

[33] N. Lee, J. Lee, and C. Park, “Augmentation-free self-supervised learn-
ing on graphs,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 36, no. 7, 2022, pp. 7372–7380.

[34] K. Hassani and A. H. Khasahmadi, “Contrastive multi-view represen-
tation learning on graphs,” in International Conference on Machine
Learning. PMLR, 2020, pp. 4116–4126.

[35] J. Yuan, H. Yu, M. Cao, M. Xu, J. Xie, and C. Wang, “Semi-supervised
and self-supervised classification with multi-view graph neural net-
works,” in Proceedings of the 30th ACM International Conference on
Information & Knowledge Management, 2021, pp. 2466–2476.

[36] S. Thakoor, C. Tallec, M. G. Azar, R. Munos, P. Veličković, and
M. Valko, “Bootstrapped representation learning on graphs,” in ICLR
2021 Workshop on Geometrical and Topological Representation Learn-
ing, 2021.

[37] S. Suresh, P. Li, C. Hao, and J. Neville, “Adversarial graph aug-
mentation to improve graph contrastive learning,” Advances in Neural
Information Processing Systems, vol. 34, 2021.

[38] J. Qiu, Q. Chen, Y. Dong, J. Zhang, H. Yang, M. Ding, K. Wang,
and J. Tang, “Gcc: Graph contrastive coding for graph neural network
pre-training,” in Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2020, pp. 1150–
1160.

[39] T. Haveliwala, “Efficient computation of pagerank,” Stanford, Tech.
Rep., 1999.

[40] D. Xu, W. Cheng, D. Luo, H. Chen, and X. Zhang, “Infogcl:
Information-aware graph contrastive learning,” Advances in Neural
Information Processing Systems, vol. 34, pp. 30 414–30 425, 2021.

[41] Y. Zhang, H. Zhu, Z. Song, P. Koniusz, and I. King, “Costa: covariance-
preserving feature augmentation for graph contrastive learning,” in
Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2022, pp. 2524–2534.

[42] Y. Tian, C. Sun, B. Poole, D. Krishnan, C. Schmid, and P. Isola, “What
makes for good views for contrastive learning?” Advances in Neural
Information Processing Systems, vol. 33, pp. 6827–6839, 2020.

[43] Y. Zhang, Q. Yao, L. Yue, X. Wu, Z. Zhang, Z. Lin, and Y. Zheng,
“Emerging drug interaction prediction enabled by flow-based graph
neural network with biomedical network,” Nature Computational Sci-
ence, 2023.

[44] X. Zhang, Y. Shen, and L. Chen, “Feature-oriented sampling for fast
and scalable gnn training,” in 2022 IEEE International Conference on
Data Mining (ICDM). IEEE, 2022, pp. 723–732.

871

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 15,2024 at 06:28:51 UTC from IEEE Xplore. Restrictions apply.

[45] Y. Zhang, Z. Zhou, Q. Yao, X. Chu, and B. Han, “Adaprop: Learning
adaptive propagation for graph neural network based knowledge graph
reasoning,” in Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2023, pp. 3446–3457.

[46] W. Lin, F. He, F. Zhang, X. Cheng, and H. Cai, “Initialization for
network embedding: A graph partition approach,” in Proceedings of
the 13th International Conference on Web Search and Data Mining,
2020, pp. 367–374.

[47] D. Lin, S. Sun, J. Ding, X. Ke, H. Gu, X. Huang, C. Song, X. Zhang,
L. Yi, J. Wen et al., “Platogl: Effective and scalable deep graph
learning system for graph-enhanced real-time recommendation,” in
Proceedings of the 31st ACM International Conference on Information
& Knowledge Management, 2022, pp. 3302–3311.

[48] W. Lin, “Large-scale network embedding in apache spark,” in Proceed-
ings of the 27th ACM SIGKDD Conference on Knowledge Discovery
& Data Mining, 2021, pp. 3271–3279.

[49] W. Xiao, H. Zhao, V. W. Zheng, and Y. Song, “Vertex-reinforced
random walk for network embedding,” in Proceedings of the 2020
SIAM International Conference on Data Mining. SIAM, 2020, pp.
595–603.

[50] P. Barceló, E. V. Kostylev, M. Monet, J. Pérez, J. L. Reutter, and J.-
P. Silva, “The expressive power of graph neural networks as a query
language,” ACM SIGMOD Record, vol. 49, no. 2, pp. 6–17, 2020.

[51] Y. Zheng, H. Wang, Z. Wei, J. Liu, and S. Wang, “Instant graph
neural networks for dynamic graphs,” in Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, ser.
KDD ’22, New York, NY, USA, 2022, p. 2605–2615.

[52] H. Liu, S. Lu, X. Chen, and B. He, “G3: when graph neural networks
meet parallel graph processing systems on gpus,” Proceedings of the
VLDB Endowment, vol. 13, no. 12, pp. 2813–2816, 2020.

[53] D. Yao, Y. Gu, G. Cong, H. Jin, and X. Lv, “Entity resolution with
hierarchical graph attention networks,” in Proceedings of the 2022
International Conference on Management of Data, 2022, pp. 429–442.

[54] Y. Han, C. Chai, J. Liu, G. Li, C. Wei, and C. Zhan, “Dynamic
materialized view management using graph neural network,” 2023.

[55] H. Li and L. Chen, “Cache-based gnn system for dynamic graphs,” in
Proceedings of the 30th ACM International Conference on Information
& Knowledge Management, 2021, pp. 937–946.

[56] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation
functions,” arXiv preprint arXiv:1710.05941, 2017.

[57] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in neural information processing
systems, 2017, pp. 1024–1034.

[58] A. Sankar, Y. Wu, L. Gou, W. Zhang, and H. Yang, “Dysat: Deep neural
representation learning on dynamic graphs via self-attention networks,”
in Proceedings of the 13th International Conference on Web Search and
Data Mining, 2020, pp. 519–527.

[59] H. Li and L. Chen, “Early: Efficient and reliable graph neural network
for dynamic graphs,” Proceedings of the ACM on Management of Data,
vol. 1, no. 2, pp. 1–28, 2023.

[60] T. Chen, S. Bian, and Y. Sun, “Are powerful graph neural nets
necessary? a dissection on graph classification,” arXiv preprint
arXiv:1905.04579, 2019.

[61] H. Wang, M. He, Z. Wei, S. Wang, Y. Yuan, X. Du, and J.-R. Wen,
“Approximate graph propagation,” in Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, 2021,
pp. 1686–1696.

[62] R. Yang, J. Shi, X. Xiao, Y. Yang, J. Liu, and S. S. Bhowmick, “Scaling
attributed network embedding to massive graphs,” Proceedings of the
VLDB Endowment, vol. 14, no. 1, pp. 37–49, 2020.

[63] X. Zhang, Y. Shen, Y. Shao, and L. Chen, “Ducati: A dual-cache
training system for graph neural networks on giant graphs with the
gpu,” Proceedings of the ACM on Management of Data, vol. 1, no. 2,
pp. 1–24, 2023.

[64] Y. Park, S. Min, and J. W. Lee, “Ginex: Ssd-enabled billion-scale
graph neural network training on a single machine via provably optimal
in-memory caching,” Proceedings of the VLDB Endowment, vol. 15,
no. 11, pp. 2626–2639, 2022.

[65] W. Huang et al., “Adaptive sampling towards fast graph representation
learning,” in Advances in neural information processing systems, 2018,
pp. 4558–4567.

[66] N. Liao, D. Mo, S. Luo, X. Li, and P. Yin, “Scara: scalable graph neural
networks with feature-oriented optimization,” Proceedings of the VLDB
Endowment, vol. 15, no. 11, pp. 3240–3248, 2022.

[67] W. Huang, Y. Rong, T. Xu, F. Sun, and J. Huang, “Tackling over-
smoothing for general graph convolutional networks,” arXiv preprint
arXiv:2008.09864, 2020.

[68] Z. Shao, Z. Zhang, W. Wei, F. Wang, Y. Xu, X. Cao, and C. S. Jensen,
“Decoupled dynamic spatial-temporal graph neural network for traffic
forecasting,” Proceedings of the VLDB Endowment, vol. 15, no. 11,
pp. 2733–2746, 2022.

[69] S. Di and L. Chen, “Message function search for knowledge graph
embedding,” in Proceedings of the ACM Web Conference 2023, 2023,
pp. 2633–2644.

[70] Z. Wang, S. Di, and L. Chen, “A message passing neural network space
for better capturing data-dependent receptive fields,” in Proceedings of
the 29th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, 2023, pp. 2489–2501.

[71] W. Jin, T. Derr, H. Liu, Y. Wang, S. Wang, Z. Liu, and J. Tang, “Self-
supervised learning on graphs: Deep insights and new direction,” arXiv
preprint arXiv:2006.10141, 2020.

[72] W. Jin, X. Liu, X. Zhao, Y. Ma, N. Shah, and J. Tang, “Automated
self-supervised learning for graphs,” in 10th International Conference
on Learning Representations (ICLR 2022), 2022.

[73] Y. Wang, J. Zhang, H. Li, Y. Dong, H. Yin, C. Li, and H. Chen,
“Clusterscl: cluster-aware supervised contrastive learning on graphs,”
in Proceedings of the ACM Web Conference 2022, 2022, pp. 1611–
1621.

[74] X. Xie, F. Sun, Z. Liu, S. Wu, J. Gao, J. Zhang, B. Ding, and B. Cui,
“Contrastive learning for sequential recommendation,” in 2022 IEEE
38th international conference on data engineering (ICDE). IEEE,
2022, pp. 1259–1273.

[75] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction
by learning an invariant mapping,” in 2006 IEEE computer society
conference on computer vision and pattern recognition (CVPR’06),
vol. 2. IEEE, 2006, pp. 1735–1742.

[76] Y. Mo, L. Peng, J. Xu, X. Shi, and X. Zhu, “Simple unsupervised
graph representation learning,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 36, no. 7, 2022, pp. 7797–7805.

[77] S. Wang, Y. Tang, X. Xiao, Y. Yang, and Z. Li, “Hubppr: effective
indexing for approximate personalized pagerank,” Proceedings of the
VLDB Endowment, vol. 10, no. 3, pp. 205–216, 2016.

[78] D. Lin, R. C.-W. Wong, M. Xie, and V. J. Wei, “Index-free approach
with theoretical guarantee for efficient random walk with restart query,”
in 2020 IEEE 36th International Conference on Data Engineering
(ICDE). IEEE, 2020, pp. 913–924.

[79] S. S. Keerthi and C.-J. Lin, “Asymptotic behaviors of support vector
machines with gaussian kernel,” Neural computation, vol. 15, no. 7,
pp. 1667–1689, 2003.

[80] L. Wu, H. Lin, C. Tan, Z. Gao, and S. Z. Li, “Self-supervised learning
on graphs: Contrastive, generative, or predictive,” IEEE Transactions
on Knowledge and Data Engineering, 2021.

[81] H. Liu, S. Di, and L. Chen, “Incremental tabular learning on hetero-
geneous feature space,” Proceedings of the ACM on Management of
Data, vol. 1, no. 1, pp. 1–18, 2023.

[82] C. Chai, J. Liu, N. Tang, J. Fan, D. Miao, J. Wang, Y. Luo, and G. Li,
“Goodcore: Data-effective and data-efficient machine learning through
coreset selection over incomplete data,” Proceedings of the ACM on
Management of Data, vol. 1, no. 2, pp. 1–27, 2023.

[83] J. Wang, C. Chai, N. Tang, J. Liu, and G. Li, “Coresets over multiple
tables for feature-rich and data-efficient machine learning,” Proceed-
ings of the VLDB Endowment, vol. 16, no. 1, pp. 64–76, 2022.

[84] C. Chai, J. Liu, N. Tang, G. Li, and Y. Luo, “Selective data acquisition
in the wild for model charging,” Proceedings of the VLDB Endowment,
vol. 15, no. 7, pp. 1466–1478, 2022.

[85] B. Mirzasoleiman, J. Bilmes, and J. Leskovec, “Coresets for data-
efficient training of machine learning models,” in International Con-
ference on Machine Learning. PMLR, 2020, pp. 6950–6960.

[86] J. Huang, R. Huang, W. Liu, N. Freris, and H. Ding, “A novel sequential
coreset method for gradient descent algorithms,” in International
Conference on Machine Learning. PMLR, 2021, pp. 4412–4422.

[87] Y. Li, Y. Shen, and L. Chen, “Camel: Managing data for efficient
stream learning,” in Proceedings of the 2022 International Conference
on Management of Data, 2022, pp. 1271–1285.

[88] B. Mirzasoleiman, K. Cao, and J. Leskovec, “Coresets for robust
training of deep neural networks against noisy labels,” Advances in
Neural Information Processing Systems, vol. 33, pp. 11 465–11 477,
2020.

872

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 15,2024 at 06:28:51 UTC from IEEE Xplore. Restrictions apply.

[89] C. Chai, J. Wang, Y. Luo, Z. Niu, and G. Li, “Data management for
machine learning: A survey,” IEEE Transactions on Knowledge and
Data Engineering, vol. 35, no. 5, pp. 4646–4667, 2022.

[90] H. Li, S. Di, Z. Li, L. Chen, and J. Cao, “Black-box adversarial
attack and defense on graph neural networks,” in 2022 IEEE 38th
International Conference on Data Engineering (ICDE). IEEE, 2022,
pp. 1017–1030.

[91] D. Zügner, A. Akbarnejad, and S. Günnemann, “Adversarial attacks
on neural networks for graph data,” in Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2018, pp. 2847–2856.

[92] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, “Sim-
plifying graph convolutional networks,” in International conference on
machine learning. PMLR, 2019, pp. 6861–6871.

[93] O. Bachem, M. Lucic, and S. Lattanzi, “One-shot coresets: The case
of k-clustering,” in International conference on artificial intelligence
and statistics. PMLR, 2018, pp. 784–792.

[94] H. Li, S. DI, L. Chen, and X. Zhou. (2023) E2GCL: Efficient and
expressive contrastive learning on graph neural networks technique
report. [Online]. Available: https://anonymous.4open.science/r/ICDE
E2GCL Technique Report/

[95] W.-L. Chiang, X. Liu, S. Si, Y. Li et al., “Cluster-GCN: An efficient
algorithm for training deep and large graph convolutional networks,”
in Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2019, pp. 257–266.

[96] Z. Yang, W. Cohen, and R. Salakhudinov, “Revisiting semi-supervised
learning with graph embeddings,” in International conference on ma-
chine learning. PMLR, 2016, pp. 40–48.

[97] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann, “Pitfalls
of graph neural network evaluation,” arXiv preprint arXiv:1811.05868,
2018.

[98] Y. You, T. Chen, Y. Shen, and Z. Wang, “Graph contrastive learning au-
tomated,” in International Conference on Machine Learning. PMLR,
2021, pp. 12 121–12 132.

[99] S. Martello and P. Toth, “Approximation schemes for the subset-
sum problem: Survey and experimental analysis,” European Journal
of operational research, vol. 22, no. 1, pp. 56–69, 1985.

[100] D. Zügner and S. Günnemann, “Adversarial attacks on graph neural
networks via meta learning,” in International Conference on Learning
Representations, 2019.

[101] A. Saxena and S. Iyengar, “Centrality measures in complex networks:
A survey,” arXiv preprint arXiv:2011.07190, 2020.

[102] K. Li, Y. Liu, X. Ao, and Q. He, “Revisiting graph adversarial attack
and defense from a data distribution perspective,” in The Eleventh
International Conference on Learning Representations, 2022.

[103] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open graph benchmark: Datasets for machine learning on
graphs,” Advances in neural information processing systems, vol. 33,
pp. 22 118–22 133, 2020.

[104] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna,
“Graphsaint: Graph sampling based inductive learning method,” arXiv
preprint arXiv:1907.04931, 2019.

[105] A. Grover et al., “node2vec: Scalable feature learning for networks,”
in Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining, 2016, pp. 855–864.

[106] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv
preprint arXiv:1611.07308, 2016.

[107] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D.
Hjelm, “Deep graph infomax,” in International Conference on Learning
Representations, 2018.

[108] O. Sener and S. Savarese, “Active learning for convolutional neural net-
works: A core-set approach,” in International Conference on Learning
Representations, 2018.

[109] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka,
“Representation learning on graphs with jumping knowledge net-
works,” in International Conference on Machine Learning. PMLR,
2018, pp. 5453–5462.

[110] C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel,
and M. Neumann, “Tudataset: A collection of benchmark datasets
for learning with graphs,” in ICML 2020 Workshop on Graph
Representation Learning and Beyond (GRL+ 2020), 2020. [Online].
Available: www.graphlearning.io

[111] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An

imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, pp. 8026–8037, 2019.

[112] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.”
Journal of machine learning research, vol. 9, no. 11, 2008.

873

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 15,2024 at 06:28:51 UTC from IEEE Xplore. Restrictions apply.

